Configuration de sommetEn géométrie, une configuration de sommet est une notation abrégée pour représenter la figure de sommet d'un polyèdre ou d'un pavage comme la séquence de faces autour d'un sommet. Pour les polyèdres uniformes, il n'y a qu'un seul type de sommet et, par conséquent, la configuration des sommets définit entièrement le polyèdre. (Les polyèdres chiraux existent dans des paires d'images miroir avec la même configuration de sommet). Une configuration de sommet est donnée sous la forme d'une suite de nombres représentant le nombre de côtés des faces faisant le tour du sommet.
AntidiamantEn géométrie, un antidiamant est un polyèdre constitué de deux pyramides à base régulière de sommets S et S', symétriques, dont l'une a subi une rotation autour de l'axe SS'. Des arêtes sont ajoutées pour relier les sommets des deux bases ainsi obtenues. L' ordre de l'antidiamant désigne le nombre d'arêtes issues du sommet S (ou S'). Le cube est un antidiamant d'ordre 3. Un antidiamant est le dual d'un antiprisme semi-régulier. Diamant Trapézoèdre Catégorie:Polyèdre en:Trapezohedron eo:Kajtopluredro es:Tra
BipyramideEn géométrie, un diamant ou bipyramide, ou encore dipyramide, est un polyèdre constitué de deux pyramides symétriques dont la même base forme un polygone régulier. L'ordre du diamant est l'ordre du polygone de la base. C'est aussi l'ordre du sommet de chaque pyramide. Il existe un unique diamant dans les polyèdres réguliers: l'octaèdre. Cependant, pour chaque ordre d'un diamant, il existe un diamant dont toutes les faces sont des triangles isocèles isométriques.
Octaèdre tronquéthumb|Développement de l'octaèdre tronqué. L'octaèdre tronqué, ou tétrakaidécaèdre d'Archimède, est un polyèdre possédant 8 faces hexagonales régulières, carrées, identiques et égales. Ses faces étant des polygones réguliers se rencontrant en des sommets identiques, l'octaèdre tronqué est un solide d'Archimède. Chaque face ayant un centre de symétrie, c'est aussi un zonoèdre (à six générateurs). Comme le cube, l'octaèdre tronqué permet de paver l'espace.
Triangle isocèlevignette|upright|Un triangle isocèle. En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base. Dans un triangle isocèle, les angles adjacents à la base sont égaux. Un triangle équilatéral est un cas particulier de triangle isocèle, ayant ses trois côtés de même longueur.
Triacontaèdre rhombiqueEn géométrie, le triacontaèdre rhombique est un polyèdre convexe avec 30 faces identiques en forme de losange (rhombe). Solide de Catalan, il est le dual de l'icosidodécaèdre (solide d'Archimède), zonoèdre, il est également un des neuf polyèdres convexes isotoxaux, les autres étant les cinq solides de Platon, le cuboctaèdre, l'icosidodécaèdre, et le dodécaèdre rhombique. Le rapport de la grande diagonale sur la petite diagonale de chaque face est exactement égal au nombre d'or, φ, c’est-à-dire que les angles aigus sur chaque face mesurent 2 tan(1/φ) = tan(2), ou approximativement 63,43°.
Icositétraèdre trapézoïdalL'icositétraèdre trapézoïdal ou deltoïdal est un solide de Catalan ressemblant un peu à un cube gonflé de l'intérieur. C'est le polyèdre dual du petit rhombicuboctaèdre. Il est topologiquement équivalent à l'intersection de 4 cylindres de même diamètre, chacun des axes passant par deux sommets opposés d'un cube. Les 24 faces sont des cerfs-volants et non des trapèzes ; l'hexacontaèdre trapézoïdal et les trapèzoèdres sont également mal nommés de manière similaire.
Hexacontaèdre trapézoïdalEn géométrie, l'hexacontaèdre trapézoïdal, qualifié aussi de deltoïdal ou strombique, est un polyèdre dont les 60 faces sont des cerfs-volants convexes. Solide de Catalan, il est le dual du petit rhombicosidodécaèdre. Comme cinq autres solides de Catalan, il n'y a pas de cycle hamiltonien passant par tous ses sommets. Il est topologiquement équivalent à l'intersection de 6 cylindres de mêmes diamètres, chacun des axes passant par deux sommets opposés d'un icosaèdre régulier.
Dodécaèdre tronquéthumb|Patron (géométrie) En géométrie, le dodécaèdre tronqué est un solide d'Archimède. Il possède 12 faces décagonales régulières, 20 faces triangulaires régulières, 60 sommets et 90 arêtes. Ce polyèdre peut être formé à partir d'un dodécaèdre par troncature des coins, donc les faces pentagonales deviennent des décagones et les coins deviennent des triangles. Les coordonnées cartésiennes suivantes définissent les sommets d'un dodécaèdre tronqué centré à l'origine : où est le nombre d'or.
TétrakihexaèdreUn tétrakihexaèdre est un solide de Catalan (le dual d'un solide d'Archimède). Son dual est l'octaèdre tronqué. Il peut être vu comme un cube dont chaque face (de côté a) est couverte par une pyramide carrée (de hauteur a/4). Cette interprétation est exprimée dans le nom, d'origine grecque : = « hexaèdre » (six faces) = cube, = « quatre fois » = faces partagées en 4). Le rapport entre les longueurs des deux types d'arêtes est de 3/4.