Le curium, de symbole Cm, est l'élément chimique de . C'est un transuranien synthétique de la famille des actinides. Il a été nommé d'après les physiciens Pierre et Marie Curie. Le curium se présente comme un métal radioactif, d'un blanc argenté et d'une grande dureté. Il se forme dans les réacteurs nucléaires : une tonne de combustible usé en contient en moyenne . Le curium a été formé pour la première fois à l'été 1944 à partir d'un élément plus léger, le plutonium. Cette découverte n'a tout d'abord pas été rendue publique. Ce n'est qu'au cours d'une émission américaine pour les enfants que l'invité, Glenn T. Seaborg, auteur de la découverte, a annoncé au public son existence, en répondant à un jeune auditeur qui demandait si on avait découvert de nouveaux éléments. Le curium est un puissant émetteur α. En raison de la grande puissance thermique qui en résulte, il a été envisagé de l'utiliser dans des générateurs thermoélectriques à radioisotope. En outre, il a été utilisé pour la fabrication de destinée à réaliser des générateurs à radioisotope à faible radioactivité γ, pour activer des stimulateurs cardiaques par exemple. Cet élément peut être utilisé comme matière première pour la fabrication d'autres transuraniens et transactinides. Il sert aussi de source de rayons α dans les spectromètres X avec lesquels les robots explorateurs de Mars Sojourner, Spirit et Opportunity ont analysé les roches martiennes, et l'atterrisseur Philaé de la sonde Rosetta a analysé la surface de la comète 67P/Tchourioumov-Guerassimenko. vignette|gauche|Glenn T. Seaborg. vignette|gauche|Cyclotron de à Berkeley. Le curium a été découvert en 1944 à l'université de Californie par Glenn T. Seaborg ,Ralph A. James et Albert Ghiorso. Dans leur série d'expériences, ils ont utilisé le cyclotron de () de l'Université de Californie à Berkeley. Après le neptunium et le plutonium, ce fut le troisième transuranien découvert depuis 1940. Sa fabrication a été réussie avant celle de l'américium, de numéro atomique pourtant inférieur d'une unité.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
ME-464: Introduction to nuclear engineering
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
PHYS-450: Radiation biology, protection and applications
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.