While systems designers are increasingly turning to hardware accelerators for performance gains, realizing these gains is painstaking and error-prone. It can take several person-months to determine if a given accelerator is a good fit for a given piece of ...
Understanding looping probabilities, including the particular case of ring closure or cyclization, of fluctuating polymers (e.g., DNA) is important in many applications in molecular biology and chemistry. In a continuum limit the configuration of a polymer ...
The concept of novelty is central to questions of creativity, innovation, and discovery. Despite the prominence in scientific inquiry and everyday discourse, there is a chronic ambiguity over its meaning and a surprising variety of empirical measures, whic ...
This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique for the eva ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show ...
We introduce the analog of Kramers-Kronig dispersion relations for correlators of four scalar operators in an arbitrary conformal field theory. The correlator is expressed as an integral over its "absorptive part", defined as a double discontinuity, times ...
Monte Carlo light transport simulations often lack robustness in scenes containing specular or near-specular materials. Widely used uni- and bidirectional sampling strategies tend to find light paths involving such materials with insufficient probability, ...
We study the regularity of the probability density function of the supremum of the solution to the linear stochastic heat equation. Using a general criterion for the smoothness of densities for locally nondegenerate random variables, we establish the smoot ...