Multimodal sentiment analysis is a technology for traditional text-based sentiment analysis, which includes modalities such as audio and visual data. It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. With the extensive amount of social media data available online in different forms such as videos and images, the conventional text-based sentiment analysis has evolved into more complex models of multimodal sentiment analysis, which can be applied in the development of virtual assistants, analysis of YouTube movie reviews, analysis of news videos, and emotion recognition (sometimes known as emotion detection) such as depression monitoring, among others. Similar to the traditional sentiment analysis, one of the most basic task in multimodal sentiment analysis is sentiment classification, which classifies different sentiments into categories such as positive, negative, or neutral. The complexity of analyzing text, audio, and visual features to perform such a task requires the application of different fusion techniques, such as feature-level, decision-level, and hybrid fusion. The performance of these fusion techniques and the classification algorithms applied, are influenced by the type of textual, audio, and visual features employed in the analysis. Feature engineering, which involves the selection of features that are fed into machine learning algorithms, plays a key role in the sentiment classification performance. In multimodal sentiment analysis, a combination of different textual, audio, and visual features are employed. Similar to the conventional text-based sentiment analysis, some of the most commonly used textual features in multimodal sentiment analysis are unigrams and n-grams, which are basically a sequence of words in a given textual document. These features are applied using bag-of-words or bag-of-concepts feature representations, in which words or concepts are represented as vectors in a suitable space.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (23)
Introduction aux marchés financiers et aux séries chronologiques
Introduit les marchés financiers, les séries chronologiques, les applications d'apprentissage automatique en finance et le traitement des langues naturelles.
Thérapie musicale : Emotion-based Playlist Generation
Explore comment une application analyse les émotions pour fournir une musique appropriée.
Prétraitement PNL: Tokenization, Stop Words, Lemmatization
Couvre la tokenisation, la suppression des mots d'arrêt et la lemmatisation pour les tâches PNL.
Afficher plus
Publications associées (32)

Functionalization of harmonic nanoparticles for drug release and multimodal imaging applications

Adrian Stefan Gheata

Cancer is among the leading causes of death worldwide, and as knowledge of the disease continues to grow there is an increasing interest towards precision medicine: more specifically towards the theranostics field, i.e the development of targeted molecular ...
EPFL2024

Understanding the sentiment associated with cultural ecosystem services using images and text from social media

Devis Tuia

Social media is increasingly being employed to develop Cultural Ecosystem Services (CES) indicators. The image-sharing platform Flickr has been one of the most popular sources of data. Most large-scale studies, however, tend to only use the number of image ...
2024

Examining European Press Coverage of the Covid-19 No-Vax Movement: An NLP Framework

Daniel Gatica-Perez

This paper examines how the European press dealt with the no-vax reactions against the Covid-19 vaccine and the dis- and misinformation associated with this movement. Using a curated dataset of 1786 articles from 19 European newspapers on the anti-vaccine ...
ASSOC COMPUTING MACHINERY2023
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.