Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Explore les possibilités de transformation numérique, les mégadonnées, l'analyse et les innovations technologiques dans le domaine des affaires et de la recherche.
Introduit les marchés financiers, les séries chronologiques, les applications d'apprentissage automatique en finance et le traitement des langues naturelles.
Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.
Explore l'analyse de l'humeur exprimée sur Twitter à l'aide de données longitudinales et d'outils d'analyse de texte, en soulignant l'importance de prendre en compte les données biaisées.
Couvre les bases du traitement du langage naturel, y compris la tokenisation, le marquage en partie de la parole et l'intégration, et explore des applications pratiques comme l'analyse du sentiment.
Explore la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets dans l'analyse de texte à l'aide de modèles d'apprentissage supervisé et de sacs de mots.