En théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire. Elle permet de calculer la probabilité de chaque intervalle semi-ouvert à gauche ]a, b] où a < b, par La fonction de répartition d'une mesure de probabilité définie sur la tribu borélienne est la fonction F qui à tout réel x associe La fonction de répartition F d'une variable aléatoire X de densité de probabilité f est une des primitives (en un sens un peu relâché, voir ci-dessous) de cette densité f. Plus précisément, F est définie, pour tout nombre réel x, par : Toutefois, ce n'est pas, en toute généralité, une primitive au sens strict du terme : on peut seulement affirmer : qu'une fonction de répartition est dérivable presque partout (pour la mesure de Lebesgue) ; que si la variable X est à densité, alors la dérivée de F est presque partout (pour la mesure de Lebesgue) égale à f. Mais il y a beaucoup de « contre-exemples » : la fonction de répartition de la loi uniforme sur un intervalle, ou encore celle de la loi exponentielle, ne sont pas dérivables sur tout et ne sont donc pas, au sens strict, des primitives de densités de probabilités. Notons que, contrairement aux variables discrètes, une variable à densité X vérifie pour tout nombre réel a : en conséquence, la fonction de répartition des variables à densité est continue en tout point. En fait une variable aléatoire réelle X possède une densité de probabilité si et seulement si sa fonction de répartition est absolument continue sur chaque intervalle borné. Une variable aléatoire X est dite discrète si son support S est fini ou dénombrable, ou bien, de manière équivalente, s'il existe un ensemble A fini ou dénombrable tel que : La loi de X est déterminée sans ambiguïté par la donnée de (p) ou de (p), où Si, par exemple, X est une variable aléatoire réelle, on a où 1 est la fonction indicatrice de l'ensemble E.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MATH-230: Probability
Le cours est une introduction à la théorie des probabilités. Le but sera d'introduire le formalisme moderne (basé sur la notion de mesure), de lier celui-ci à l'aspect "intuitif" des probabilités mais
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
Afficher plus
Séances de cours associées (225)
Stellar Systems Dynamics
Explore la dynamique des systèmes stellaires, couvrant les modèles, les équations et les distributions de vitesse en coordonnées sphériques et cylindriques.
Équilibre des systèmes sans collision
Explore l'équilibre des systèmes sans collision, les fonctions de distribution anisotrope, les équations de Jeans et les modèles à potentiel fini.
Modèles graphiques : Représentation des distributions probabilistes
Couvre les modèles graphiques pour les distributions probabilistes à l'aide de graphiques, de nœuds et de bords.
Afficher plus
Publications associées (276)

Full-F turbulent simulation in a linear plasma device using a gyro-moment approach

Paolo Ricci, Baptiste Jimmy Frei

Simulations of plasma turbulence in a linear plasma device configuration are presented. These simulations are based on a simplified version of the gyrokinetic (GK) model proposed by Frei et al. [J. Plasma Phys. 86, 905860205 (2020)], where the full-F distr ...
Melville2024

Extensions of Peer Prediction Incentive Mechanisms

Adam Julian Richardson

As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
EPFL2024

A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime

Jean-François Molinari, Sacha Zenon Wattel

Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, w ...
2024
Afficher plus
Concepts associés (25)
Loi normale
En théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Loi de probabilité
thumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Variable aléatoire
vignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.
Afficher plus
MOOCs associés (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.