Explore la méthodologie MODNet pour les prévisions des biens matériels, en mettant l'accent sur la sélection des caractéristiques et l'apprentissage supervisé.
Couvre l'expansion des fonctionnalités polynomiales, les méthodes du noyau, les représentations des données, la normalisation et la gestion des données déséquilibrées dans l'apprentissage automatique.
Explore l'amélioration des prédictions d'apprentissage automatique en raffinant les mesures d'erreur et en appliquant des contraintes pour améliorer la précision des prédictions de densité électronique.
Explore le regroupement des données génomiques, l'analyse de la survie, l'identification des gènes et l'importance statistique dans la recherche sur le cancer.