In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors (supplementary angle bisectors) at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect (see the figure to the right, where four of these six are dotted line segments). The ex-tangential quadrilateral is closely related to the tangential quadrilateral (where the four sides are tangent to a circle).
Another name for an excircle is an escribed circle, but that name has also been used for a circle tangent to one side of a convex quadrilateral and the extensions of the adjacent two sides. In that context all convex quadrilaterals have four escribed circles, but they can at most have one excircle.
Kites are examples of ex-tangential quadrilaterals. Parallelograms (which include squares, rhombi, and rectangles) can be considered ex-tangential quadrilaterals with infinite exradius since they satisfy the characterizations in the next section, but the excircle cannot be tangent to both pairs of extensions of opposite sides (since they are parallel). Convex quadrilaterals whose side lengths form an arithmetic progression are always ex-tangential as they satisfy the characterization below for adjacent side lengths.
A convex quadrilateral is ex-tangential if and only if there are six concurrent angles bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex
angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
vignette|Porisme de Poncelet pour les quadrilatères bicentriques ABCD et EFGH. En géométrie euclidienne, un quadrilatère bicentrique est un quadrilatère convexe possédant à la fois un cercle inscrit (tangent à ses quatre côtés) et un cercle circonscrit (passant par ses quatre sommets). Il découle de cette définition que les quadrilatères bicentriques ont les propriétés des quadrilatères circonscriptibles et celles des quadrilatères inscriptibles.
vignette|300x300px| Un quadrilatère circonscriptible avec son cercle inscrit En géométrie euclidienne, un quadrilatère circonscriptible (ou quadrilatère tangentiel) est un quadrilatère convexe pour lequel il existe un cercle inscrit, c'est-à-dire un cercle situé à l'intérieur du quadrilatère et tangent à chacun de ses quatre côtés. On dit alors que le quadrilatère circonscrit son cercle inscrit. Un quadrilatère circonscriptible est un cas particulier de polygone circonscriptible.
L'antiparallélogramme ou contre-parallélogramme est un quadrilatère croisé dont les côtés non adjacents sont de même longueur. Ce n'est pas un parallélogramme : il a deux côtés opposés qui ne sont pas parallèles et même, qui se coupent. Dans un antiparallélogramme les angles opposés ont la même mesure. Les diagonales sont parallèles. L'antiparallélogramme admet un axe de symétrie qui est la médiatrice des diagonales. Les deux côtés opposés les plus longs ont leur point d'intersection situé sur cette médiatrice.
Explore les angles au centre d'un cercle et la puissance d'un point par rapport à un cercle, soulignant leur importance dans la géométrie et les logiciels CAO.
In the framework of rockfall trajectory modelling, the bouncing phenomenon occurring when a rock block impacts with the slope surface is the most difficult to predict, owing to its complexity and its very limited understanding. Up to now, the rebound is co ...
Let F be a family of n pairwise intersecting circles in the plane. We show that the number of lenses, that is convex digons, in the arrangement induced by F is at most 2n - 2. This bound is tight. Furthermore, if no two circles in F touch, then the geometr ...