Maximum weight matchingIn computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem, in which the input is restricted to be a bipartite graph, and the matching constrained to be have cardinality that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same.
Algorithme d'Edmonds pour les couplagesEn informatique, plus précisément en théorie des graphes, l'algorithme d'Edmonds pour les couplages (blossom algorithm en anglais), aussi connu sous le nom d'algorithme des fleurs et des pétales est un algorithme pour construire des couplages maximaux sur les graphes. L'algorithme a été développé par Jack Edmonds en 1961, et publié en 1965. Étant donné un graphe quelconque G = (V, E), l'algorithme trouve un couplage M tel que chaque sommet de V est incident à au plus une arête dans E et M est de cardinal maximal.
Algorithme hongroisvignette|Exemple de graphe biparti pondéré (oublions l'agent 3). L'objectif de l'algorithme hongrois est de calculer un couplage parfait (chaque agent a une unique tâche, et chaque tâche est assignée à un agent) de poids minimum (somme des arêtes en rouge minimale). L'algorithme hongrois ou méthode hongroise, aussi appelé algorithme de Kuhn-Munkres, est un algorithme d'optimisation combinatoire, qui résout le problème d'affectation en temps polynomial.
Fractional matchingIn graph theory, a fractional matching is a generalization of a matching in which, intuitively, each vertex may be broken into fractions that are matched to different neighbor vertices. Given a graph G = (V, E), a fractional matching in G is a function that assigns, to each edge e in E, a fraction f(e) in [0, 1], such that for every vertex v in V, the sum of fractions of edges adjacent to v is at most 1: A matching in the traditional sense is a special case of a fractional matching, in which the fraction of every edge is either 0 or 1: f(e) = 1 if e is in the matching, and f(e) = 0 if it is not.
Problème des mariages stablesvignette|Algorithme de Gale Shapley. En mathématiques, informatique et économie, le problème des mariages stables consiste à trouver, étant donné n hommes et n femmes, et leurs listes de préférences, une façon stable de les mettre en couple. Une situation est dite instable s'il y a au moins un homme et une femme qui préféreraient se mettre en couple plutôt que de rester avec leurs partenaires actuels (Dupont préfère à , et préfère Dupont à Durand). Ce problème a des applications en économie, en théorie des jeux et en physique statistique.
Factor-critical graphIn graph theory, a mathematical discipline, a factor-critical graph (or hypomatchable graph) is a graph with n vertices in which every subgraph of n − 1 vertices has a perfect matching. (A perfect matching in a graph is a subset of its edges with the property that each of its vertices is the endpoint of exactly one of the edges in the subset.) A matching that covers all but one vertex of a graph is called a near-perfect matching. So equivalently, a factor-critical graph is a graph in which there are near-perfect matchings that avoid every possible vertex.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Boucle (théorie des graphes)In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices): Where graphs are defined so as to allow loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph.
Hall-type theorems for hypergraphsIn the mathematical field of graph theory, Hall-type theorems for hypergraphs are several generalizations of Hall's marriage theorem from graphs to hypergraphs. Such theorems were proved by Ofra Kessler, Ron Aharoni, Penny Haxell, Roy Meshulam, and others. Hall's marriage theorem provides a condition guaranteeing that a bipartite graph (X + Y, E) admits a perfect matching, or - more generally - a matching that saturates all vertices of Y. The condition involves the number of neighbors of subsets of Y.