Terminaison d'un algorithmeLa terminaison est une propriété fondamentale des algorithmes. Elle stipule que les calculs décrits par l'algorithme s'arrêteront. En général cet arrêt doit avoir lieu quelles que soient les données initiales que l'on fournit à l'algorithme. Si l'on veut insister sur ce point on parle alors souvent de terminaison uniforme, mais le plus généralement « terminaison » couvre aussi bien l'arrêt sur une donnée que l'arrêt sur toutes les données et c'est le contexte qui décide.
Théorie des types homotopiquesvignette| Couverture de la Théorie des types homotopiques : Fondations univalentes des mathématiques. Dans la logique mathématique et de l’informatique, la théorie des types homotopiques (en anglais : Homotopy Type Theory HoTT) fait référence à différentes lignes de développement de la théorie des types intuitionnistes, basée sur l’interprétation des types comme des objets auxquels l’intuition de la théorie de l’homotopie s’applique.
Logique d'ordre supérieurLes logiques d'ordre supérieur (en anglais, higher-order logic ou HOL) sont des logiques formelles permettant d'utiliser des variables qui réfèrent à des fonctions ou à des prédicats. Elles étendent le calcul des prédicats. Cela revient à dire que l'on considère les fonctions et prédicats comme des objets de base à part entière, au même titre que, par exemple, un nombre entier. On s'autorisera ainsi, d'une part, à quantifier les prédicats et les fonctions et, d'autre part, à donner des fonctions ou des prédicats en arguments à d'autres fonctions ou prédicats.
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.
F* (programming language)F* (pronounced F star) is a functional programming language inspired by ML and aimed at program verification. Its type system includes dependent types, monadic effects, and refinement types. This allows expressing precise specifications for programs, including functional correctness and security properties. The F* type-checker aims to prove that programs meet their specifications using a combination of SMT solving and manual proofs. Programs written in F* can be translated to OCaml, F#, and C for execution.
Lean (assistant de preuve)Lean est un assistant de preuve et un langage de programmation. Il repose sur le principe de calcul des constructions avec types inductifs. Lean possède un certain nombre de fonctionnalités notables qui le distinguent des autres logiciels d'assistance à la preuve. Lean peut être compilé vers du JavaScript, et est ainsi accessible dans un navigateur Web. Il prend en charge nativement les caractères Unicode des symboles mathématiques, qui peuvent être saisis grâce à des raccourcis rappelant la syntaxe de LaTeX (par exemple, "×" s'obtient en tapant "\times").
Idris (programming language)Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell. The Idris type system is similar to Agda's, and proofs are similar to Coq's, including tactics (theorem proving functions/procedures) via elaborator reflection. Compared to Agda and Coq, Idris prioritizes management of side effects and support for embedded domain-specific languages.