In thermodynamics, the particle number (symbol N) of a thermodynamic system is the number of constituent particles in that system. The particle number is a fundamental thermodynamic property which is conjugate to the chemical potential. Unlike most physical quantities, the particle number is a dimensionless quantity, specifically a countable quantity. It is an extensive property, as it is directly proportional to the size of the system under consideration and thus meaningful only for closed systems. A constituent particle is one that cannot be broken into smaller pieces at the scale of energy k·T involved in the process (where k is the Boltzmann constant and T is the temperature). For example, in a thermodynamic system consisting of a piston containing water vapour, the particle number is the number of water molecules in the system. The meaning of constituent particles, and thereby of particle numbers, is thus temperature-dependent. The concept of particle number plays a major role in theoretical considerations. In situations where the actual particle number of a given thermodynamical system needs to be determined, mainly in chemistry, it is not practically possible to measure it directly by counting the particles. If the material is homogeneous and has a known amount of substance n expressed in moles, the particle number N can be found by the relation : where NA is the Avogadro constant. A related intensive system parameter is the particle number density, a quantity of kind volumetric number density obtained by dividing the particle number of a system by its volume. This parameter is often denoted by the lower-case letter n. In quantum mechanical processes, the total number of particles may not be preserved. The concept is therefore generalized to the particle number operator, that is, the observable that counts the number of constituent particles. In quantum field theory, the particle number operator (see Fock state) is conjugate to the phase of the classical wave (see coherent state).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
CH-442: Photochemistry I
This course presents the theoretical bases of electronic spectroscopy and molecular photophysics. The principles of the reactivity of excited states of molecules and solids under irradiation are detai
ENV-320: Physics and chemistry of the atmosphere
The course provides an introduction to the physical and chemical processes that govern the atmospheric dynamics at small and large scales. The basis is laid for an in depth understanding of our atmosp
PHYS-106(a): General physics : thermodynamics
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Afficher plus
Publications associées (79)
Concepts associés (16)
Gaz
vignette|Sphère de stockage de gaz naturel. vignette|Conduite de gaz de ville en polyéthylène. vignette|Panneau indiquant une conduite de gaz enterrée en France. vignette|Les gaz de combat ont été produits et utilisés de manière industrielle lors de la Première Guerre mondiale. Un gaz est un ensemble d'atomes ou de molécules très faiblement liés et quasi indépendants. Dans l’état gazeux, la matière n'a pas de forme propre ni de volume propre : un gaz tend à occuper tout le volume disponible.
Température
La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).
Quantité de matière
En chimie ou en physique, selon le Bureau international des poids et mesures, Il s'agit d'une grandeur physique dont l'unité correspondante dans le Système international d'unités (SI) est la mole. La quantité de matière unitaire est donc « une mole » de la matière considérée, quelle que soit cette matière. L'expression « quantité de matière » n'a été définie qu'en 1969. L'expression « nombre de moles », préexistante, reste correcte et est encore répandue parmi les chimistes.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.