thumb|upright|Évariste Galois offre une condition nécessaire et suffisante à la résolution d'une équation polynomiale par l’algèbre. Il répond ainsi à une question centrale de la théorie, ouverte depuis des millénaires. Sa méthode fournit des résultats novateurs, à l’origine de nouvelles branches de l’algèbre, qui dépassent le cadre de la théorie des équations.
La théorie des équations est un ensemble de travaux ayant pour objectif premier la résolution d’équations polynomiales ou équivalentes. Une telle équation s’écrit de la manière suivante :
où X désigne l’inconnue.
La « théorie des équations » est une expression utilisée en histoire des sciences.
L’étude de ce type de questions remonte aux premiers textes mathématiques connus. Une première approche permet de résoudre l’équation dans le cas où le degré du polynôme est strictement plus petit que cinq. C'est durant la Renaissance et avec l'étude des équations cubiques que de nouveaux nombres sont utilisés. Ils sont qualifiés initialement d’imaginaires puis de nombres complexes. Ce n'est que plus tard que ceux-ci interviennent comme solutions d’équations de degré deux.
À partir de l'époque moderne, le polynôme est aussi considéré comme une fonction, appelée fonction polynomiale. Cette approche offre des méthodes pour déterminer le nombre de racines réelles, pour localiser les racines (c’est-à-dire trouver des régions où elles se trouvent) et pour fournir des méthodes d’approximations aussi précises que souhaité. L’un de ses achèvements est le théorème de d'Alembert-Gauss, qui indique qu’une fonction polynomiale non constante admet au moins une racine dans les nombres complexes.
Un point de vue du consiste à étudier le plus petit ensemble de nombres, stable pour les quatre opérations et qui contienne à la fois coefficients et racines d'une équation donnée. Cette approche entre dans la théorie dite de Galois. Elle offre une condition nécessaire et suffisante pour savoir si une équation polynomiale se résout par les techniques décrites par la première approche, dans le cas contraire l’on doit se limiter à des approximations issues de l’analyse.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra (in fact, every proof must use the completeness of the real numbers, which is not an algebraic property).
A solution in radicals or algebraic solution is a closed-form expression, and more specifically a closed-form algebraic expression, that is the solution of a polynomial equation, and relies only on addition, subtraction, multiplication, division, raising to integer powers, and the extraction of nth roots (square roots, cube roots, and other integer roots). A well-known example is the solution of the quadratic equation There exist more complicated algebraic solutions for cubic equations and quartic equations.
Couvre l'introduction et les solutions des équations linéaires, y compris les méthodes pour résoudre les systèmes et déterminer le nombre de solutions.
We develop an algorithm for solving a system of diophantine equations with lower and upper bounds on the variables. The algorithm is based on lattice basis reduction. It first finds a short vector satisfying the system of diophantine equations, and a set o ...
Previously, G. Cornuejols and M. Dawande (1998) proposed a set of 0-1 linear programming instances that proved to be very hard to solve by traditional methods, and in particular by linear programming based branch-and-bound. They offered these market split ...