Acyclic spaceIn mathematics, an acyclic space is a nonempty topological space X in which cycles are always boundaries, in the sense of homology theory. This implies that integral homology groups in all dimensions of X are isomorphic to the corresponding homology groups of a point. In other words, using the idea of reduced homology, It is common to consider such a space as a nonempty space without "holes"; for example, a circle or a sphere is not acyclic but a disc or a ball is acyclic.
Binary icosahedral groupIn mathematics, the binary icosahedral group 2I or is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the of the icosahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary icosahedral group is a discrete subgroup of Spin(3) of order 120. It should not be confused with the full icosahedral group, which is a different group of order 120, and is rather a subgroup of the orthogonal group O(3).
Superperfect groupIn mathematics, in the realm of group theory, a group is said to be superperfect when its first two homology groups are trivial: H1(G, Z) = H2(G, Z) = 0. This is stronger than a perfect group, which is one whose first homology group vanishes. In more classical terms, a superperfect group is one whose abelianization and Schur multiplier both vanish; abelianization equals the first homology, while the Schur multiplier equals the second homology.