Madhava seriesIn mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century Kerala by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are: All three series were later independently discovered in 17th century Europe.
Nombre irrationnelUn nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
École du Keralathumb|Région du Kerala, Inde L’école du Kerala est une école de mathématiques et d'astronomie fondée par Madhava de Sangamagrama dans la province du Kerala en Inde, et ayant eu entre autres pour membres et Nilakantha Somayaji. Elle prospéra entre le et le , s'achevant avec les travaux de Melpathur Narayana Bhattathiri. Les découvertes mathématiques de l'école anticipent de deux siècles certains des résultats du calcul infinitésimal de Newton et Leibniz (mais non leurs techniques), obtenant par exemple le développement en série entière des fonctions trigonométriques, mais il n'y a pas de preuve que ces découvertes se soient diffusées en dehors du Kerala.
Histoire des fonctions trigonométriquesL’histoire des fonctions trigonométriques semble avoir débuté il y a environ ans. Nous savons de façon certaine que les Babyloniens déterminaient des approximations de mesures d'angles ou de longueurs de côtés de triangles rectangles. Plusieurs tables de nombres gravés sur de l'argile séchée en témoignent. Une tablette babylonienne écrite en cunéiforme, nommée Plimpton 322 (environ 1900 av. J.-C.) montre quinze triplets pythagoriciens et une colonne de nombres, qui peut être interprétée comme une table de sécantes.