Madhava seriesIn mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century Kerala by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are: All three series were later independently discovered in 17th century Europe.
Nombre irrationnelUn nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
École du Keralathumb|Région du Kerala, Inde L’école du Kerala est une école de mathématiques et d'astronomie fondée par Madhava de Sangamagrama dans la province du Kerala en Inde, et ayant eu entre autres pour membres et Nilakantha Somayaji. Elle prospéra entre le et le , s'achevant avec les travaux de Melpathur Narayana Bhattathiri. Les découvertes mathématiques de l'école anticipent de deux siècles certains des résultats du calcul infinitésimal de Newton et Leibniz (mais non leurs techniques), obtenant par exemple le développement en série entière des fonctions trigonométriques, mais il n'y a pas de preuve que ces découvertes se soient diffusées en dehors du Kerala.
Histoire des fonctions trigonométriquesL’histoire des fonctions trigonométriques semble avoir débuté il y a environ ans. Nous savons de façon certaine que les Babyloniens déterminaient des approximations de mesures d'angles ou de longueurs de côtés de triangles rectangles. Plusieurs tables de nombres gravés sur de l'argile séchée en témoignent. Une tablette babylonienne écrite en cunéiforme, nommée Plimpton 322 (environ 1900 av. J.-C.) montre quinze triplets pythagoriciens et une colonne de nombres, qui peut être interprétée comme une table de sécantes.
Pivignette|Si le diamètre du cercle est 1, sa circonférence est π. π (pi), appelé parfois constante d’Archimède, est un nombre représenté par la lettre grecque du même nom en minuscule (π). C’est le rapport constant de la circonférence d’un cercle à son diamètre dans un plan euclidien. On peut également le définir comme le rapport de l'aire d'un disque au carré de son rayon. Sa valeur approchée par défaut à moins de 0,5×10 près est en écriture décimale.
Histoire des mathématiquesL’histoire des mathématiques s'étend sur plusieurs millénaires et dans de nombreuses régions du globe allant de la Chine à l’Amérique centrale. Jusqu'au , le développement des connaissances mathématiques s’effectue essentiellement de façon cloisonnée dans divers endroits du globe. À partir du et surtout au , le foisonnement des travaux de recherche et la mondialisation des connaissances mènent plutôt à un découpage de cette histoire en fonction des domaines mathématiques.
Mathématiques indiennesLa chronologie des mathématiques indiennes s'étend de la civilisation de la vallée de l'Indus (-3300 à -1500) jusqu'à l'Inde moderne. Parmi les contributions des mathématiciens indiens au développement de la discipline, la plus féconde est certainement la numération décimale de position, appuyée sur des chiffres indiens, empruntés par les Arabes et qui se sont imposés dans le monde entier. Les Indiens ont maîtrisé le zéro, les nombres négatifs, les fonctions trigonométriques.
Astronomie indienneL'astronomie indienne (Jyotiṣa) est une des six Védanga ou une des « disciplines auxiliaires » associées avec l'étude des Véda. Le premier texte relatant d'astronomie en Inde est le traité de Lagadha, daté de la période de l'Empire Maurya (-322 à -180). Comme pour d'autres traditions, l'application de l'astronomie était essentiellement religieuse et serait plutôt appelée « astrologie» selon la terminologie moderne.