ObservableUne observable est l'équivalent en mécanique quantique d'une grandeur physique en mécanique classique, comme la position, la quantité de mouvement, le spin, l'énergie, etc. Ce terme provient d'une expression utilisée par Werner Heisenberg dans ses travaux sur la mécanique des matrices, où il parlait de beobachtbare Grösse (quantité observable), et où il insistait sur la nécessité d'une définition opérationnelle d'une grandeur physique, qui prend mathématiquement la forme d'un opérateur.
État quantiqueL'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Théorie du champ moléculaireLe champ moléculaire est un modèle développé par Pierre Weiss dans l’objectif de fonder une théorie du comportement des ferromagnétiques. Cette théorie est ensuite étendue à d'autres matériaux magnétiques. Certains matériaux, en particulier les ferromagnétiques, possèdent une aimantation spontanée en l'absence de tout champ magnétique externe. Ce modèle explique l'existence de cette aimantation par l'action d'un champ interne nommé champ moléculaire.
Logique quantiqueLa logique quantique est la base de raisonnements et conclusions en accord avec les postulats de la mécanique quantique. En particulier, les observables n'étant pas forcément commutatives, le théorème d'Heisenberg (cf. le principe d'incertitude), entraîne la notion d'intricats, notion purement quantique comme l'illustre celle de chat mort & vivant du célèbre paradoxe du chat de Schrödinger. John von Neumann a montré, en réfléchissant aux fondations de la mécanique quantique, que la logique d'Aristote (cf.
Entropy (statistical thermodynamics)The concept entropy was first developed by German physicist Rudolf Clausius in the mid-nineteenth century as a thermodynamic property that predicts that certain spontaneous processes are irreversible or impossible. In statistical mechanics, entropy is formulated as a statistical property using probability theory. The statistical entropy perspective was introduced in 1870 by Austrian physicist Ludwig Boltzmann, who established a new field of physics that provided the descriptive linkage between the macroscopic observation of nature and the microscopic view based on the rigorous treatment of large ensembles of microstates that constitute thermodynamic systems.