Résumé
In statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis, discriminant analysis, as well as more general families of models in the multivariate analysis of variance and covariance analyses (MANOVA, ANOVA, ANCOVA). In addition to being thought of as a form of multiple regression focusing on causality, path analysis can be viewed as a special case of structural equation modeling (SEM) – one in which only single indicators are employed for each of the variables in the causal model. That is, path analysis is SEM with a structural model, but no measurement model. Other terms used to refer to path analysis include causal modeling and analysis of covariance structures. Path analysis is considered by Judea Pearl to be a direct ancestor to the techniques of Causal inference. Path analysis was developed around 1918 by geneticist Sewall Wright, who wrote about it more extensively in the 1920s. It has since been applied to a vast array of complex modeling areas, including biology, psychology, sociology, and econometrics. Typically, path models consist of independent and dependent variables depicted graphically by boxes or rectangles. Variables that are independent variables, and not dependent variables, are called 'exogenous'. Graphically, these exogenous variable boxes lie at outside edges of the model and have only single-headed arrows exiting from them. No single-headed arrows point at exogenous variables. Variables that are solely dependent variables, or are both independent and dependent variables, are termed 'endogenous'. Graphically, endogenous variables have at least one single-headed arrow pointing at them. In the model below, the two exogenous variables (Ex1 and Ex2) are modeled as being correlated as depicted by the double-headed arrow. Both of these variables have direct and indirect (through En1) effects on En2 (the two dependent or 'endogenous' variables/factors).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique