In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-module M to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.
These algebraic ideas are closely related to topological ideas. The group cohomology of a discrete group G is the singular cohomology of a suitable space having G as its fundamental group, namely the corresponding Eilenberg–MacLane space. Thus, the group cohomology of can be thought of as the singular cohomology of the circle S1, and similarly for and
A great deal is known about the cohomology of groups, including interpretations of low-dimensional cohomology, functoriality, and how to change groups. The subject of group cohomology began in the 1920s, matured in the late 1940s, and continues as an area of active research today.
A general paradigm in group theory is that a group G should be studied via its group representations.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Se penche sur les théorèmes des coefficients universels en algèbre homologique, montrant leur application pratique dans le calcul des groupes d'homologie et de cohomologie.
En mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
En mathématiques, la cohomologie galoisienne est l'étude de l'action d'un groupe de Galois sur certains groupes, par des méthodes cohomologiques. Elle permet d'obtenir des résultats à la fois sur le groupe de Galois agissant, et sur le groupe sur lequel il agit. En particulier, le groupe de Galois d'une extension de corps de nombres L/K agit naturellement par exemple sur le groupe multiplicatif L, mais aussi sur le groupe des unités de l'anneau des entiers du corps L, ou sur son groupe des classes.
En algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...