Concept

Tate cohomology group

In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were introduced by , and are used in class field theory. If G is a finite group and A a G-module, then there is a natural map N from to taking a representative a to (the sum over all G-conjugates of a). The Tate cohomology groups are defined by for , quotient of by norms of elements of A, quotient of norm 0 elements of A by principal elements of A, for . If is a short exact sequence of G-modules, then we get the usual long exact sequence of Tate cohomology groups: If A is an induced G module then all Tate cohomology groups of A vanish. The zeroth Tate cohomology group of A is (Fixed points of G on A)/(Obvious fixed points of G acting on A) where by the "obvious" fixed point we mean those of the form . In other words, the zeroth cohomology group in some sense describes the non-obvious fixed points of G acting on A. The Tate cohomology groups are characterized by the three properties above. Tate's theorem gives conditions for multiplication by a cohomology class to be an isomorphism between cohomology groups. There are several slightly different versions of it; a version that is particularly convenient for class field theory is as follows: Suppose that A is a module over a finite group G and a is an element of , such that for every subgroup E of G is trivial, and is generated by , which has order E. Then cup product with a is an isomorphism: for all n; in other words the graded Tate cohomology of A is isomorphic to the Tate cohomology with integral coefficients, with the degree shifted by 2. F. Thomas Farrell extended Tate cohomology groups to the case of all groups G of finite virtual cohomological dimension. In Farrell's theory, the groups are isomorphic to the usual cohomology groups whenever n is greater than the virtual cohomological dimension of the group G. Finite groups have virtual cohomological dimension 0, and in this case Farrell's cohomology groups are the same as those of Tate.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.