En mathématiques, une formation de classes est une structure utilisée pour organiser les divers groupes de Galois et les modules qui apparaissent dans la théorie des corps de classes. Ils ont été inventées par Emil Artin et John Tate. Plus précisément, c'est la donnée d'un groupe, agissant sur un certain module, le tout vérifiant une certaine axiomatique, principalement exprimée d'un point de vue cohomologique. Le but de cette notion est d'axiomatiser la théorie des corps de classes, indépendamment des divers contextes où on souhaite obtenir ses énoncés : corps fini ou infini, global ou local, de caractéristique nulle ou positive. Le groupe considéré étant alors le groupe de Galois absolu du corps considéré, et le module étant le groupe multiplicatif de la clôture séparable de ce même corps. La donnée d'un groupe de Galois absolu d'un corps local, de ses sous-groupes d'indice fini, et de l'action de ce groupe sur le groupe multiplicatif de la clôture séparable du corps considéré (la clôture algébrique dans le cas d'un corps de nombres p-adiques, puisque le fait d'être en caractéristique 0 assure la séparabilité), est l'exemple classique de formation, celui à partir duquel l'axiomatique a été bâtie. Dans le paragraphe qui suit, on indique entre parenthèses l'interprétation dans cet exemple des diverses propriétés requises. Une formation est un groupe topologique G avec un topologique A. Le groupe G est donné muni d'une famille de sous-groupes d'indices finis (destinés à correspondre aux extensions séparables finies du corps considéré via la correspondance de Galois), dont on suppose qu'elle est stable par intersection finie (un compositum fini d'extensions finies est une extension finie), que tout sous-groupe contenant un élément de la famille est dans la famille (toute sous-extension d'une extension finie est finie), et qu'elle est globalement stable par conjugaison par des éléments de G (l'image par l'action d'un élément du groupe de Galois absolu d'une extension finie, non nécessairement galoisienne, est à nouveau une extension finie).
Stefano Filipazzi, Roberto Svaldi
Eva Bayer Fluckiger, Ting-Yu Lee