Perte de mémoire (probabilités)En probabilités et statistique, la perte de mémoire est une propriété de certaines lois de probabilité : la loi exponentielle et la loi géométrique. On dit que ce sont des lois sans mémoire. Cette propriété est le plus souvent exprimée en termes de . Supposons qu'une variable aléatoire soit définie comme le temps passé dans un magasin de l'heure d'ouverture (disons neuf heures du matin) à l'arrivée du premier client. On peut donc voir comme le temps qu'un serveur attend avant l'arrivée du premier client.
Entropy rateIn the mathematical theory of probability, the entropy rate or source information rate of a stochastic process is, informally, the time density of the average information in a stochastic process. For stochastic processes with a countable index, the entropy rate is the limit of the joint entropy of members of the process divided by , as tends to infinity: when the limit exists. An alternative, related quantity is: For strongly stationary stochastic processes, .
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Couverture de MarkovEn apprentissage automatique, la couverture de Markov pour un nœud d'un réseau bayésien est l'ensemble des nœuds composés des parents de , de ses enfants et des parents de ses enfants. Dans un réseau de Markov, la couverture de Markov d'un nœud est l'ensemble de ses nœuds voisins. La couverture de Markov peut également être désignée par . Chaque ensemble de nœuds dans le réseau est conditionnellement indépendant de lorsqu'il est conditionné sur l'ensemble , c'est-à-dire lorsqu'elle est déterminée sur la couverture de Markov du nœud .
Markov information sourceIn mathematics, a Markov information source, or simply, a Markov source, is an information source whose underlying dynamics are given by a stationary finite Markov chain. An information source is a sequence of random variables ranging over a finite alphabet , having a stationary distribution. A Markov information source is then a (stationary) Markov chain , together with a function that maps states in the Markov chain to letters in the alphabet .
Markov kernelIn probability theory, a Markov kernel (also known as a stochastic kernel or probability kernel) is a map that in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite state space. Let and be measurable spaces. A Markov kernel with source and target is a map with the following properties: For every (fixed) , the map is -measurable For every (fixed) , the map is a probability measure on In other words it associates to each point a probability measure on such that, for every measurable set , the map is measurable with respect to the -algebra .
Probabilité stationnaire d'une chaîne de MarkovLa probabilité stationnaire d'une chaîne de Markov s'interprète usuellement comme la fraction du temps passé en chaque état de l'espace d'états de cette chaîne de Markov, asymptotiquement. En effet, une version de la loi forte des grands nombres pour les chaînes de Markov stipule que : presque sûrement, sous certaines hypothèses détaillées plus bas. La variable aléatoire s'interprète comme le temps passé en lors des premiers pas de la chaîne de Markov La fraction est donc la fraction de temps passé en l'état pendant les premiers pas de la chaîne de Markov.
Stochastic cellular automatonStochastic cellular automata or probabilistic cellular automata (PCA) or random cellular automata or locally interacting Markov chains are an important extension of cellular automaton. Cellular automata are a discrete-time dynamical system of interacting entities, whose state is discrete. The state of the collection of entities is updated at each discrete time according to some simple homogeneous rule. All entities' states are updated in parallel or synchronously.
Deterministic systemIn mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly.
Équation de diffusionLéquation de diffusion est une équation aux dérivées partielles. En physique, elle décrit le comportement du déplacement collectif de particules (molécules, atomes, photons. neutrons, etc.) ou de quasi-particules comme les phonons dans un milieu causé par le mouvement aléatoire de chaque particule lorsque les échelles de temps et d'espace macroscopiques sont grandes devant leurs homologues microscopiques. Dans le cas contraire le problème est décrit par l'équation de Boltzmann.