Concepts associés (11)
Leverage (statistics)
In statistics and in particular in regression analysis, leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points, if any, are outliers with respect to the independent variables. That is, high-leverage points have no neighboring points in space, where is the number of independent variables in a regression model. This makes the fitted model likely to pass close to a high leverage observation.
Projection matrix
In statistics, the projection matrix , sometimes also called the influence matrix or hat matrix , maps the vector of response values (dependent variable values) to the vector of fitted values (or predicted values). It describes the influence each response value has on each fitted value. The diagonal elements of the projection matrix are the leverages, which describe the influence each response value has on the fitted value for that same observation.
T-statistic
In statistics, the t-statistic is the ratio of the departure of the estimated value of a parameter from its hypothesized value to its standard error. It is used in hypothesis testing via Student's t-test. The t-statistic is used in a t-test to determine whether to support or reject the null hypothesis. It is very similar to the z-score but with the difference that t-statistic is used when the sample size is small or the population standard deviation is unknown.
Degré de liberté (statistiques)
En statistiques le degré de liberté (ddl) désigne le nombre de variables aléatoires qui ne peuvent être déterminées ou fixées par une équation (notamment les équations des tests statistiques). Une autre définition est : . Le degré de liberté est égal au nombre d'observations moins le nombre de relations entre ces observations : on pourrait remplacer l'expression « nombre de relations » par « nombre de paramètres à estimer ». Supposons un ensemble de n variables aléatoires, toutes de même loi et indépendantes X,.
Distance de Cook
En statistique, la distance de Cook est couramment utilisée pour estimer l'influence d'une donnée lors de l'utilisation de méthodes des moindres carrés. Dans le cas général, de l'utilisation de la méthode des moindres carrés, la distance de Cook peut être utilisée de plusieurs façons : pour indiquer les données qu'il serait intéressant de vérifier; pour indiquer les régions de l'espace de conception où il serait bon d'être en mesure d'obtenir plus de points de données. Ce nom vient du statisticien américain R.
Règle 68-95-99,7
vignette|Illustration de la règle 68-95-99.7 (à partir d'une expérience réelle, ce qui explique l'asymétrie par rapport à la loi normale). En statistique, la règle 68-95-99,7 (ou règle des trois sigmas ou règle empirique) indique que pour une loi normale, presque toutes les valeurs se situent dans un intervalle centré autour de la moyenne et dont les bornes se situent à trois écarts-types de part et d'autre de celle-ci. Environ 68,27 % des valeurs se situent à moins d'un écart-type de la moyenne.
Résidu (statistiques)
In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Robustesse (statistiques)
En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Loi de Student
En théorie des probabilités et en statistique, la loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ. Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne. Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ à k degrés de liberté.
Régression linéaire
En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.