Résumé
In statistics, the number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary. Estimates of statistical parameters can be based upon different amounts of information or data. The number of independent pieces of information that go into the estimate of a parameter is called the degrees of freedom. In general, the degrees of freedom of an estimate of a parameter are equal to the number of independent scores that go into the estimate minus the number of parameters used as intermediate steps in the estimation of the parameter itself. For example, if the variance is to be estimated from a random sample of N independent scores, then the degrees of freedom is equal to the number of independent scores (N) minus the number of parameters estimated as intermediate steps (one, namely, the sample mean) and is therefore equal to N − 1. Mathematically, degrees of freedom is the number of dimensions of the domain of a random vector, or essentially the number of "free" components (how many components need to be known before the vector is fully determined). The term is most often used in the context of linear models (linear regression, analysis of variance), where certain random vectors are constrained to lie in linear subspaces, and the number of degrees of freedom is the dimension of the subspace. The degrees of freedom are also commonly associated with the squared lengths (or "sum of squares" of the coordinates) of such vectors, and the parameters of chi-squared and other distributions that arise in associated statistical testing problems. While introductory textbooks may introduce degrees of freedom as distribution parameters or through hypothesis testing, it is the underlying geometry that defines degrees of freedom, and is critical to a proper understanding of the concept. Although the basic concept of degrees of freedom was recognized as early as 1821 in the work of German astronomer and mathematician Carl Friedrich Gauss, its modern definition and usage was first elaborated by English statistician William Sealy Gosset in his 1908 Biometrika article "The Probable Error of a Mean", published under the pen name "Student".
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (20)
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud
MATH-408: Regression methods
General graduate course on regression methods
MICRO-570: Advanced machine learning
This course will present some of the core advanced methods in the field for structure discovery, classification and non-linear regression. This is an advanced class in Machine Learning; hence, student
Afficher plus
Séances de cours associées (34)
Essentiels de la régression linéaire
Couvre l'essentiel de la régression linéaire, en se concentrant sur l'utilisation de multiples variables explicatives quantitatives pour prédire un résultat quantitatif.
Processus de fabrication de pizza
Couvre le processus de fabrication de la pizza, de l'échantillonnage, des moyennes, de la dispersion, des résidus et de la distribution normale.
Régression moderne: données d'orge de printemps
Couvre les moindres carrés pondérés itératifs, la régression de Poisson et l'analyse bayésienne des données sur l'orge de printemps à l'aide de modèles mixtes.
Afficher plus
Publications associées (66)