Hyperarithmetical theoryIn recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory. The central focus of hyperarithmetic theory is the sets of natural numbers known as hyperarithmetic sets. There are three equivalent ways of defining this class of sets; the study of the relationships between these different definitions is one motivation for the study of hyperarithmetical theory.
Ordinal analysisIn proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory. The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinal of Peano arithmetic is ε0.
Ordinal récursifEn mathématiques, en particulier en calculabilité et en théorie des ensembles, un ordinal est dit calculable ou récursif s'il existe un bon ordre calculable d'un sous-ensemble calculable des nombres naturels ayant le type d'ordre . Il est facile de vérifier que est calculable. On montre également que le successeur d'un ordinal calculable est calculable, et que l'ensemble de tous les ordinaux calculables est fermé vers le bas. La borne supérieure de tous les ordinaux calculables est appelé l'ordinal de Church-Kleene, le premier ordinal non récursif, et noté .
Premier ordinal non dénombrableEn mathématiques, le premier ordinal non dénombrable, noté ω1 ou parfois Ω, est le plus petit ordinal non dénombrable ; c'est aussi l'ensemble des ordinaux finis ou infinis dénombrables. En d'autres termes, c'est l'ordinal de Hartogs de tout ensemble infini dénombrable. ω1 est le supremum de tous les ordinaux au plus dénombrables ; ce sont ses éléments. Comme tout ordinal (dans l'approche de von Neumann), ω1 est un ensemble bien ordonné, la relation d'ordre étant la relation d'appartenance : ∈.
Grand ordinal dénombrableEn mathématiques, et plus particulièrement en théorie des ensembles, il existe de nombreuses méthodes de description des ordinaux dénombrables. Les plus petits (jusqu'à ε0) peuvent être exprimés (de façon utile et non circulaire) à l'aide de leur forme normale de Cantor. Au-delà, on parle de grands ordinaux dénombrables ; de nombreux grands ordinaux (le plus souvent en rapport avec la théorie de la démonstration) possèdent des notations ordinales calculables.
Nombre epsilonEn mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway.
Ordinal arithmeticIn the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.