Solide de PlatonEn géométrie euclidienne, un solide de Platon est l’un des cinq polyèdres à la fois réguliers et convexes. En référence au nombre de faces (4, 6, 8, 12 et 20) qui les composent, ils sont nommés couramment tétraèdre (régulier), hexaèdre (régulier) ou cube, octaèdre (régulier), dodécaèdre (régulier) et icosaèdre (régulier), les adjectifs « régulier » et « convexe » étant souvent implicites ou omis quand le contexte le permet. Depuis les mathématiques grecques, les solides de Platon furent un sujet d’étude des géomètres en raison de leur esthétique et de leurs symétries.
Dual d'un polyèdreEn géométrie, il existe plusieurs façons (géométrique, combinatoire) de mettre les polyèdres en dualité : on peut se passer de support géométrique et définir une notion de dualité en termes purement combinatoires, qui s'étend d'ailleurs aux polyèdres et polytopes abstraits. Dans chaque cas, à tout polyèdre est associé un polyèdre appelé dual du premier, tel que : le dual du polyèdre dual est le polyèdre initial, les faces de l'un sont en correspondance avec les sommets de l'autre, en respectant les propriétés d'adjacence.
Symbole de SchläfliEn mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.