MATH-317: Algebra V - Galois theoryGalois theory lies at the interface of Field Theory and Group Theory. It aims to describe the algebraic symmetries of fields. We will focus on Galois theory for finite field extensions and some applic
MATH-494: Topics in arithmetic geometryP-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
MATH-726(2): Working group in Topology IIThe theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
MATH-506: Topology IV.b - cohomology ringsSingular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
COM-401: Cryptography and securityThis course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
MATH-679: Group schemesThis is a course about group schemes, with an emphasis on structural theorems for algebraic groups (e.g. Barsotti--Chevalley's theorem). All the basics will be covered towards the proof of such theore