Publications associées (55)

Correspondence functors and duality

Jacques Thévenaz, Serge Bouc

A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2023

Relative plus constructions

Jérôme Scherer

Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...
2023

GLOBALLY plus -REGULAR VARIETIES AND THE MINIMAL MODEL PROGRAM FOR THREEFOLDS IN MIXED CHARACTERISTIC

Zsolt Patakfalvi, Joseph Allen Waldron

We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...
SPRINGER HEIDELBERG2023

The multivariate Serre conjecture ring

Luc Guyot

It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
San Diego2023

On the commutativity of flows of rough vector fields

Maria Colombo, Riccardo Tione

In the class of Sobolev vector fields in R-n of bounded divergence, for which the theory of DiPerna and Lions provides a well defined notion of flow, we characterize the vector fields whose flow commutes in terms of the Lie bracket and of a regularity cond ...
ELSEVIER2022

Hopf algebras and Hopf-Galois extensions in infinity-categories

Aras Ergus

In this thesis, we study interactions between algebraic and coalgebraic structures in infinity-categories (more precisely, in the quasicategorical model of (infinity, 1)-categories). We define a notion of a Hopf algebra H in an E-2-monoidal infinity-catego ...
EPFL2022

Computational tools for twisted topological Hochschild homology of equivariant spectra

Kathryn Hess Bellwald, Inbar Klang

Twisted topological Hochschild homology of Cn-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this paper we intr ...
ELSEVIER2022

The cotangent complex and Thom spectra

Nima Rasekh

The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of E-infinity-ring spectra in various ways. In this work we first establish, in the context o ...
2021

A combinatorial proof of a sumset conjecture of Furstenberg

Florian Karl Richter

We give a new proof of a sumset conjecture of Furstenberg that was first proved by Hochman and Shmerkin in 2012: if logr/logs\log r / \log s is irrational and XX and YY are ×r\times r- and ×s\times s-invariant subsets of [0,1][0,1], respectively, then $\dim_\text{ ...
2021

Mutual information for low-rank even-order symmetric tensor estimation

Nicolas Macris, Jean François Emmanuel Barbier, Clément Dominique Luneau

We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method orig ...
OXFORD UNIV PRESS2021

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.