Théorie des types homotopiquesvignette| Couverture de la Théorie des types homotopiques : Fondations univalentes des mathématiques. Dans la logique mathématique et de l’informatique, la théorie des types homotopiques (en anglais : Homotopy Type Theory HoTT) fait référence à différentes lignes de développement de la théorie des types intuitionnistes, basée sur l’interprétation des types comme des objets auxquels l’intuition de la théorie de l’homotopie s’applique.
Lean (assistant de preuve)Lean est un assistant de preuve et un langage de programmation. Il repose sur le principe de calcul des constructions avec types inductifs. Lean possède un certain nombre de fonctionnalités notables qui le distinguent des autres logiciels d'assistance à la preuve. Lean peut être compilé vers du JavaScript, et est ainsi accessible dans un navigateur Web. Il prend en charge nativement les caractères Unicode des symboles mathématiques, qui peuvent être saisis grâce à des raccourcis rappelant la syntaxe de LaTeX (par exemple, "×" s'obtient en tapant "\times").
MatitaMatita is an experimental proof assistant under development at the Computer Science Department of the University of Bologna. It is a tool aiding the development of formal proofs by man-machine collaboration, providing a programming environment where formal specifications, executable algorithms and automatically verifiable correctness certificates naturally coexist. Matita is based on a dependent type system known as the Calculus of (Co)Inductive Constructions (a derivative of Calculus of Constructions), and is compatible, to some extent, with Coq.
Lambda-calculLe lambda-calcul (ou λ-calcul) est un système formel inventé par Alonzo Church dans les années 1930, qui fonde les concepts de fonction et d'application. On y manipule des expressions appelées λ-expressions, où la lettre grecque λ est utilisée pour lier une variable. Par exemple, si M est une λ-expression, λx.M est aussi une λ-expression et représente la fonction qui à x associe M. Le λ-calcul a été le premier formalisme pour définir et caractériser les fonctions récursives : il a donc une grande importance dans la théorie de la calculabilité, à l'égal des machines de Turing et du modèle de Herbrand-Gödel.
Déduction naturelleEn logique mathématique, la déduction naturelle est un système formel où les règles de déduction des démonstrations sont proches des façons naturelles de raisonner. C'est une étape importante de l'histoire de la théorie de la démonstration pour plusieurs raisons : contrairement aux systèmes à la Hilbert fondés sur des listes d'axiomes logiques plus ou moins ad hoc, la déduction naturelle repose sur un principe systématique de symétrie : pour chaque connecteur, on donne une paire de règles duales (introduction/élimination) ; elle a conduit Gentzen à inventer un autre formalisme très important en théorie de la démonstration, encore plus « symétrique » : le calcul des séquents ; elle a permis dans les années 1960 d'identifier la première instance de l'isomorphisme de Curry-Howard.
Constructivisme (mathématiques)En philosophie des mathématiques, le constructivisme est une position vis-à-vis des mathématiques qui considère que l'on ne peut effectivement démontrer l'existence d'objets mathématiques qu'en donnant une construction de ceux-ci, une suite d'opérations mentales qui conduit à l'évidence de l'existence de ces objets. En particulier, les constructivistes ne considèrent pas que le raisonnement par l'absurde est universellement valide, une preuve d'existence par l'absurde (c-à-d une preuve où la non-existence entraîne une contradiction) ne conduisant pas en soi à une construction de l'objet.