Concept

Écologie chimique

Résumé
Chemical ecology is the study of chemically mediated interactions between living organisms, and the effects of those interactions on the demography, behavior and ultimately evolution of the organisms involved. It is thus a vast and highly interdisciplinary field. Chemical ecologists seek to identify the specific molecules (i.e. semiochemicals) that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The substances that serve in such roles are typically small, readily-diffusible organic molecules, but can also include larger molecules and small peptides. In practice, chemical ecology relies extensively on chromatographic techniques, such as thin-layer chromatography, high performance liquid chromatography, and gas chromatography, to isolate and identify bioactive metabolites. To identify molecules with the sought-after activity, chemical ecologists often make use of bioassay-guided fractionation. Today, chemical ecologists also incorporate genetic and genomic techniques to understand the biosynthetic and signal transduction pathways underlying chemically mediated interactions. Plant chemical ecology focuses on the role of chemical cues and signals in mediating interactions of plants with their biotic environment (e.g. microorganisms, phytophagous insects, and pollinators). The chemical ecology of plant-insect interaction is a significant subfield of chemical ecology. In particular, plants and insects are often involved in a chemical evolutionary arms race. As plants develop chemical defenses to herbivory, insects which feed on them evolve immunity to these poisons, and in some cases, repurpose these poisons for their own chemical defense against predators. For example, caterpillars of the monarch butterfly sequester cardenolide toxins from their milkweed host-plants and are able to use them as an anti-predator defense. Whereas most insects are killed by cardenolides, which are potent inhibitors of the Na+/K+-ATPase, monarchs have evolved resistance to the toxin over their long evolutionary history with milkweeds.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.