Rayon de SchwarzschildEn physique et en astronomie, le rayon de Schwarzschild est le rayon de l'horizon d'un trou noir de Schwarzschild, lequel est un trou noir dont la charge électrique et le moment cinétique sont nuls. Cela signifie qu'en dessous de ce rayon tous les photons (circulant à la vitesse de la lumière) ont (en oubliant qu'on est dans un cadre relativiste) des trajectoires elliptiques et ne peuvent s'échapper. Par extension, c'est une longueur intervenant dans la description relativiste du champ gravitationnel créé par une distribution de masse à symétrie sphérique.
Horizon des événementsL'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
Supernova à effondrement de cœurvignette|upright=1.3|Représentation d'artiste de SN 1987A. La supernova à effondrement de cœur est l'un des deux principaux mécanismes de formation de supernova, l'autre étant la supernova thermonucléaire (). Les types spectraux correspondants sont le , le (si l'étoile a perdu son enveloppe d'hydrogène) ou le (si l'étoile a perdu ses enveloppes d'hydrogène et d'hélium). Ce type de supernova correspond à l'expulsion violente des couches externes des étoiles massives (à partir de ) en fin de vie.
AccrétionL’accrétion est, en astrophysique, en géologie, en médecine et en météorologie, la constitution et l'accroissement d'un corps, d'une structure ou d'un objet, par apport et/ou agglomération de matière, généralement en surface ou en périphérie de celui-ci. L'accrétion désigne la capture de matière par un astre sous l'effet de la gravitation. L'accrétion a lieu dans de nombreux contextes astrophysiques, lorsqu'un objet compact est situé dans un environnement de matière diffuse, notamment : les étoiles en formation ; les planètes en formation ; les novae ; les trous noirs, en particulier dans les noyaux actifs de galaxies.
Singularité gravitationnelleEn relativité générale, une singularité gravitationnelle est une région de l'espace-temps au voisinage de laquelle certaines quantités décrivant le champ gravitationnel deviennent infinies quel que soit le système de coordonnées retenu. Les singularités gravitationnelles sont des singularités mises en évidence par les solutions de l'équation du champ gravitationnel d'Albert Einstein. Une singularité gravitationnelle est une singularité du tenseur métrique g et non une simple singularité de coordonnées.
Masse de ChandrasekharLa masse de Chandrasekhar est la masse maximale que la pression de dégénérescence électronique d'un objet peut supporter sans qu'il y ait d'effondrement gravitationnel. Elle intervient lorsque de la matière s'accumule autour d'un objet fait de matière dégénérée, comme une naine blanche ou un cœur d'étoile massive. La limite fut calculée en 1930 par le physicien indien Subrahmanyan Chandrasekhar alors âgé de lors d'un voyage en paquebot de Bombay vers l'Angleterre.
Étoile exotiquevignette|Image du télescope spatial Chandra Une étoile exotique est un objet compact qui est composé d'autres particules que les fermions que l'on trouve dans les atomes (électrons, protons ou neutrons). L'effondrement gravitationnel de la matière dégénérée est compensé par des propriétés quantiques. Il s'agit notamment d'étoiles à quarks ou composées de matière étrange ou de préons. Les étoiles exotiques sont en grande partie théoriques, mais des observations réalisées par le télescope spatial Chandra, le ont relevé deux candidates pouvant se révéler être des étoiles à quarks, RX J1856.
Énergie de FermiL'énergie de Fermi, EF, en mécanique quantique, est l'énergie du plus haut état quantique occupé dans un système par des fermions à . Parfois, le terme est confondu avec le niveau de Fermi, qui décrit un sujet proche quoique différent, le niveau de Fermi représentant le potentiel chimique des fermions. Ces deux quantités sont les mêmes à , mais diffèrent pour toute autre température.
Carbon detonationCarbon detonation or carbon deflagration is the violent reignition of thermonuclear fusion in a white dwarf star that was previously slowly cooling. It involves a runaway thermonuclear process which spreads through the white dwarf in a matter of seconds, producing a type Ia supernova which releases an immense amount of energy as the star is blown apart. The carbon detonation/deflagration process leads to a supernova by a different route than the better known type II (core-collapse) supernova (the type II is caused by the cataclysmic explosion of the outer layers of a massive star as its core implodes).
Métrique de SchwarzschildEn astrophysique, dans le cadre de la relativité générale, la métrique de Schwarzschild est une solution des équations d'Einstein. L'espace-temps, dont la métrique décrit la géométrie, a quatre dimensions ; il est vide mais courbe bien qu'asymptotiquement plat ; il est à symétrie sphérique et stationnaire ; il est statique à l'extérieur d'un rayon critique : le rayon de Schwarzschild ; et, lorsque le vide s'étend au-delà de ce rayon, la métrique met en évidence un trou noir : le trou noir de Schwarzschild .