Forge welding (FOW), also called fire welding, is a solid-state welding process that joins two pieces of metal by heating them to a high temperature and then hammering them together. It may also consist of heating and forcing the metals together with presses or other means, creating enough pressure to cause plastic deformation at the weld surfaces. The process, although challenging, has been a method of joining metals used since ancient times and is a staple of traditional blacksmithing. Forge welding is versatile, being able to join a host of similar and dissimilar metals. With the invention of electrical welding and gas welding methods during the Industrial Revolution, manual forge-welding has been largely replaced, although automated forge-welding is a common manufacturing process.
Forge welding is a process of joining metals by heating them beyond a certain threshold and forcing them together with enough pressure to cause deformation of the weld surfaces, creating a metallic bond between the atoms of the metals. The pressure required varies, depending on the temperature, strength, and hardness of the alloy. Forge welding is the oldest welding technique, and has been used since ancient times.
Welding processes can generally be grouped into two categories: fusion and diffusion welding. Fusion welding involves localized melting of the metals at the weld interfaces, and is common in electric or gas welding techniques. This requires temperatures much higher than the melting point of the metal in order to cause localized melting before the heat can thermally conduct away from the weld, and often a filler metal is used to keep the weld from segregating due to the high surface tension. Diffusion welding consists of joining the metals without melting them, welding the surfaces together while in the solid state.
In diffusion welding, the heat source is often lower than the melting point of the metal, allowing more even heat-distribution thus reducing thermal stresses at the weld.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction to the assembly of materials by homogeneous or heterogeneous joints (welding, bonding, mechanical assembly). Mechanical and environmental resistance of joints.
Ce cours permet de maitriser les aspects fondamentaux et pratiques du dimensionnement des structures en acier. Il traite des poutres, des poteaux, des assemblages, des cadres, des systèmes porteurs et
Oxy-fuel welding (commonly called oxyacetylene welding, oxy welding, or gas welding in the United States) and oxy-fuel cutting are processes that use fuel gases (or liquid fuels such as gasoline or petrol, diesel, bio diesel, kerosene, etc) and oxygen to weld or cut metals. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localised melting of the workpiece material (e.
Les traitements thermiques dits de revenu font partie d'une famille de traitements thermiques ayant pour trait commun d'être toujours effectués à des températures inférieures aux températures de transformations allotropiques des métaux, lorsque celles-ci existent. Les revenus ont la particularité de produire deux effets : une transformation métallurgique rendue possible par le mécanisme de diffusion amorcé pendant un séjour suffisant à température (voir Diagramme temps-température-transformation) ; un abaissement de la limite d'élasticité et, de moindre façon, du module d'élasticité pendant la montée en température et une légère amorce de fluage pendant le temps de palier à température de revenu.
La fabrication d’un sabre japonais prend un peu plus d’un mois : un mois de forge et une semaine de polissage. La lame du sabre japonais est traditionnellement forgée à partir d’un acier brut (tamahagane) transformé en acier composite : le massiot d’acier. Celui-ci est naturellement composé de deux nuances et il est brisé en petits morceaux qui sont triés en fonction de leur dureté. Les morceaux durs (hadagane ou kawagane) contiennent plus de carbone et sont utilisés pour l’enveloppe tandis que les morceaux plus tendres (shingane) sont utilisés pour le noyau.
Couvre les techniques de soudage à l'état solide, y compris le soudage par friction et le soudage par ultrasons, ainsi que des processus spécifiques tels que le dépôt par friction et le câblage dans l'électronique.
Explore les transformations de phase dans les alliages Fe-C, en mettant l'accent sur la formation de perlite et de martensite et le rôle de la teneur en carbone.
Explore les techniques de soudage des polymères telles que les plaques chauffantes, les ultrasons et le soudage au laser, en soulignant leurs applications et leurs avantages et inconvénients.
Structural steels have long been used in construction applications. Their mechanical properties and behavior under seismic loading or under fatigue design are of considerable interest for researchers and engineers. Although extensive studies have been cond ...
2021
,
In capacity designed steel moment resisting frames, inelastic deformations are mostly concentrated in the steel beams and the column fixed ends of the first story. This design concept limits the participation of the column web’s panel zone in the energy di ...
Application of a single metal or alloy is often restricted by its properties from optimal combination of performance and cost. Therefore, there is a vast need of joining dissimilar metals for various applications in biomedical, aerospace, automobile and ma ...