Concept

Nombre double de Mersenne

In mathematics, a double Mersenne number is a Mersenne number of the form where p is prime. The first four terms of the sequence of double Mersenne numbers are : A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number Mp can be prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number can be prime only if Mp is itself a Mersenne prime. For the first values of p for which Mp is prime, is known to be prime for p = 2, 3, 5, 7 while explicit factors of have been found for p = 13, 17, 19, and 31. Thus, the smallest candidate for the next double Mersenne prime is , or 22305843009213693951 − 1. Being approximately 1.695, this number is far too large for any currently known primality test. It has no prime factor below 1 × 1036. There are probably no other double Mersenne primes than the four known. Smallest prime factor of (where p is the nth prime) are 7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617, ... (next term is > 1 × 1036) The recursively defined sequence is called the sequence of Catalan–Mersenne numbers. The first terms of the sequence are: Catalan discovered this sequence after the discovery of the primality of by Lucas in 1876. Catalan conjectured that they are prime "up to a certain limit". Although the first five terms are prime, no known methods can prove that any further terms are prime (in any reasonable time) simply because they are too huge. However, if is not prime, there is a chance to discover this by computing modulo some small prime (using recursive modular exponentiation). If the resulting residue is zero, represents a factor of and thus would disprove its primality. Since is a Mersenne number, such a prime factor would have to be of the form . Additionally, because is composite when is composite, the discovery of a composite term in the sequence would preclude the possibility of any further primes in the sequence.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.