thumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32. On ne sait pas si les nombres à partir de F33 sont premiers ou composés. Ainsi, les seuls nombres de Fermat premiers connus sont au nombre de cinq, à savoir les cinq premiers F0, F1, F2, F3 et F4, qui valent respectivement 3, 5, 17, 257 et . Les nombres de Fermat disposent de propriétés intéressantes, en général issues de l'arithmétique modulaire. En particulier, le théorème de Gauss-Wantzel établit un lien entre ces nombres et la construction à la règle et au compas des polygones réguliers : un polygone régulier à n côtés peut être construit à la règle et au compas si et seulement si n est une puissance de 2, ou le produit d'une puissance de 2 et de nombres de Fermat premiers distincts. En 1640, dans une lettre adressée à Bernard Frénicle de Bessy, Pierre de Fermat énonce son petit théorème et commente : Ce théorème lui permet d'étudier les nombres portant maintenant son nom. Dans cette même lettre, il émet la conjecture que ces nombres sont tous premiers mais reconnaît : . Cette hypothèse le fascine ; deux mois plus tard, dans une lettre à Marin Mersenne, il écrit : Il écrit encore à Blaise Pascal : . Dans une lettre à Kenelm Digby, non datée mais envoyée par Digby à John Wallis le , Fermat donne encore sa conjecture comme non démontrée. Toutefois, dans une lettre de 1659 à Pierre de Carcavi, il s'exprime en des termes qui, selon certains auteurs, impliquent qu'il estime avoir trouvé une démonstration. Si Fermat a soumis cette conjecture à ses principaux correspondants, elle est par contre absente des Arithmétiques de Diophante rééditées en 1670, où son fils retranscrivit les quarante-sept autres conjectures qui furent plus tard prouvées.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
CS-119(c): Information, Computation, Communication
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
Afficher plus
Publications associées (12)
Personnes associées (1)
Concepts associés (26)
Racine primitive modulo n
Les racines primitives modulo n sont un concept issu de l'arithmétique modulaire, dans la théorie des nombres. Ce sont (lorsqu'il en existe) les générateurs du groupe des inversibles de l'anneau Z/nZ. Si n est un entier strictement positif, les nombres premiers avec n, pris modulo n, forment un groupe pour la multiplication, noté (Z/nZ) ou Z. Ce groupe est cyclique si et seulement si n est égal à 4 ou p ou 2p pour un nombre premier p ≥ 3 et k ≥ 0. Un générateur de ce groupe cyclique est appelé une racine primitive modulo n, ou un élément primitif de Z.
3 (nombre)
3 (trois) est l'entier naturel qui suit 2 et qui précède 4. La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre trois. Trois (chiffre) Le chiffre « trois », symbolisé « 3 », est le chiffre arabe servant notamment à signifier le nombre trois. Le chiffre « 3 » n'est pas le seul utilisé dans le monde ; un certain nombre d'alphabets — particulièrement ceux des langues du sous-continent indien et du sud-est asiatique — utilisent des chiffres différents, même au sein de la numération indo-arabe.
Constructible polygon
In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Some regular polygons are easy to construct with compass and straightedge; others are not.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.