Concept

Matching in hypergraphs

Concepts associés (10)
Rainbow matching
In the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Given an edge-colored graph G = (V,E), a rainbow matching M in G is a set of pairwise non-adjacent edges, that is, no two edges share a common vertex, such that all the edges in the set have distinct colors. A maximum rainbow matching is a rainbow matching that contains the largest possible number of edges. Rainbow matchings are of particular interest given their connection to transversals of Latin squares.
Hall-type theorems for hypergraphs
In the mathematical field of graph theory, Hall-type theorems for hypergraphs are several generalizations of Hall's marriage theorem from graphs to hypergraphs. Such theorems were proved by Ofra Kessler, Ron Aharoni, Penny Haxell, Roy Meshulam, and others. Hall's marriage theorem provides a condition guaranteeing that a bipartite graph (X + Y, E) admits a perfect matching, or - more generally - a matching that saturates all vertices of Y. The condition involves the number of neighbors of subsets of Y.
Transversal (combinatorics)
In mathematics, particularly in combinatorics, given a family of sets, here called a collection C, a transversal (also called a cross-section) is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of C (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal: One variation is that there is a bijection f from the transversal to C such that x is an element of f(x) for each x in the transversal.
Bipartite hypergraph
In graph theory, the term bipartite hypergraph describes several related classes of hypergraphs, all of which are natural generalizations of a bipartite graph. Property B The weakest definition of bipartiteness is also called 2-colorability. A hypergraph H = (V, E) is called 2-colorable if its vertex set V can be partitioned into two sets, X and Y, such that each hyperedge meets both X and Y. Equivalently, the vertices of H can be 2-colored so that no hyperedge is monochromatic.
Rainbow-independent set
In graph theory, a rainbow-independent set (ISR) is an independent set in a graph, in which each vertex has a different color. Formally, let G = (V, E) be a graph, and suppose vertex set V is partitioned into m subsets V_1, ..., V_m, called "colors". A set U of vertices is called a rainbow-independent set if it satisfies both the following conditions: It is an independent set – every two vertices in U are not adjacent (there is no edge between them); It is a rainbow set – U contains at most a single vertex from each color V_i.
Balanced hypergraph
In graph theory, a balanced hypergraph is a hypergraph that has several properties analogous to that of a bipartite graph. Balanced hypergraphs were introduced by Berge as a natural generalization of bipartite graphs. He provided two equivalent definitions. A hypergraph H = (V, E) is called 2-colorable if its vertices can be 2-colored so that no hyperedge is monochromatic. Every bipartite graph G = (X+Y, E) is 2-colorable: each edge contains exactly one vertex of X and one vertex of Y, so e.g.
Hypergraphe
Les hypergraphes sont des objets mathématiques généralisant la notion de graphe. Ils ont été nommés ainsi par Claude Berge dans les années 1960. Les hypergraphes généralisent la notion de graphe non orienté dans le sens où les arêtes ne relient plus un ou deux sommets, mais un nombre quelconque de sommets (compris entre un et le nombre de sommets de l’hypergraphe). Certains théorèmes de la théorie des graphes se généralisent naturellement aux hypergraphes, par exemple le théorème de Ramsey.
Family of sets
In set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. A family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of .
Vertex cover
In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations.
Perfect matching
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M. A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used. Every perfect matching is a maximum-cardinality matching, but the opposite is not true.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.