In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph.
In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations. It is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem, was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory.
The minimum vertex cover problem can be formulated as a half-integral, linear program whose dual linear program is the maximum matching problem.
Vertex cover problems have been generalized to hypergraphs, see Vertex cover in hypergraphs.
Formally, a vertex cover of an undirected graph is a subset of such that , that is to say it is a set of vertices where every edge has at least one endpoint in the vertex cover . Such a set is said to cover the edges of . The upper figure shows two examples of vertex covers, with some vertex cover marked in red.
A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number is the size of a minimum vertex cover, i.e. . The lower figure shows examples of minimum vertex covers in the previous graphs.
The set of all vertices is a vertex cover.
The endpoints of any maximal matching form a vertex cover.
The complete bipartite graph has a minimum vertex cover of size .
A set of vertices is a vertex cover if and only if its complement is an independent set.
Consequently, the number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set (Gallai 1959).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course covers numerous powerful algorithmic techniques (greedy, local search, linear programming, multiplicative weight update, ...). The concepts are studied in clean and simple settings so as t
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
En théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
En informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
We prove that for any triangle-free intersection graph of n axis-parallel line segments in the plane, the independence number alpha of this graph is at least alpha n/4+ohm(root n). We complement this with a construction of a graph in this class satisfying ...
These notes cover the lectures of the first named author at 2021 IHES Summer School on "Enumerative Geometry, Physics and Representation Theory" with additional details and references. They cover the definition of Khovanov-Rozansky triply graded homology, ...
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...