Concept

Injective tensor product

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the . Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS with any need to extend definitions (such as "differentiable at a point") from real/complex-valued functions to -valued functions. Throughout let and be topological vector spaces and be a linear map. is a topological homomorphism or homomorphism, if it is linear, continuous, and is an open map, where has the subspace topology induced by If is a subspace of then both the quotient map and the canonical injection are homomorphisms. In particular, any linear map can be canonically decomposed as follows: where defines a bijection. The set of continuous linear maps (resp. continuous bilinear maps ) will be denoted by (resp. ) where if is the scalar field then we may instead write (resp. ). The set of separately continuous bilinear maps (that is, continuous in each variable when the other variable is fixed) will be denoted by where if is the scalar field then we may instead write We will denote the continuous dual space of by or and the algebraic dual space (which is the vector space of all linear functionals on whether continuous or not) by To increase the clarity of the exposition, we use the common convention of writing elements of with a prime following the symbol (for example, denotes an element of and not, say, a derivative and the variables and need not be related in any way). Topology of uniform convergence and Mackey topology denotes the coarsest topology on making every map in continuous and or denotes endowed with this topology.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.