RisqueLe risque est la possibilité de survenue d'un événement indésirable, la probabilité d’occurrence d'un péril probable ou d'un aléa. Le risque est une notion complexe, de définitions multiples car d'usage multidisciplinaire. Néanmoins, il est un concept très usité depuis le , par exemple sous la forme de l'expression , notamment pour qualifier, dans le sens commun, un événement, un inconvénient qu'il est raisonnable de prévenir ou de redouter l'éventualité.
SociologieLa sociologie est une discipline des sciences sociales qui a pour objectif de rechercher des explications et des compréhensions typiquement sociales, et non pas mentales ou biophysiques, à des phénomènes observables. La sociologie étudie les relations sociales qui produisent par exemple, selon les approches : des pratiques, des faits sociaux, des interactions, des identités sociales, des institutions sociales, des organisations, des réseaux, des cultures, des classes sociales, des normes sociales ainsi que de toutes ces entités qui n'ont pas d'explications purement biophysiques ou mentales et qui sont produites par les individus et groupes sociaux.
Incertitude de mesurevignette|Mesurage avec une colonne de mesure. En métrologie, une incertitude de mesure liée à un mesurage (d'après le Bureau international des poids et mesures). Elle est considérée comme une dispersion et fait appel à des notions de statistique. Les causes de cette dispersion, liées à différents facteurs, influent sur le résultat de mesurage, donc sur l'incertitude et in fine sur la qualité de la mesure. Elle comprend de nombreuses composantes qui sont évaluées de deux façons différentes : certaines par une analyse statistique, d'autres par d'autres moyens.
Théorie de la décisionLa théorie de la décision est une théorie de mathématiques appliquées ayant pour objet la prise de décision par une entité unique. (Les questions liées à la décision collective relèvent de la théorie du choix social.) La notion de décision intertemporelle découle de la prise en compte du facteur temps dans les problématiques reliant l'offre et la demande, les disponibilités et les contraintes. Ces problématiques sont celles qui découlent des combinaisons possibles entre les disponibilités et les décisions pouvant les impliquer.
Constante de PlanckEn physique, la constante de Planck, notée , également connue sous le nom de « quantum d'action » depuis son introduction dans la théorie des quanta, est une constante physique qui a la même dimension qu'une énergie multipliée par une durée. Nommée d'après le physicien Max Planck, elle joue un rôle central en mécanique quantique car elle est le coefficient de proportionnalité fondamental qui relie l'énergie d'un photon à sa fréquence () et sa quantité de mouvement à son nombre d'onde () ou, plus généralement, les propriétés discrètes de type corpusculaires aux propriétés continues de type ondulatoire.
StochastiqueLe mot stochastique est synonyme d', en référence au hasard et s’oppose par définition au déterminisme. Stochastique est un terme d'origine grecque qui signifie « basé sur la conjecture ». En français, il est couramment utilisé pour décrire des phénomènes aléatoires ou imprévisibles. Dans les mathématiques et la statistique, « stochastique » fait référence à des processus qui sont déterminés par des séquences de mouvements aléatoires. Cela inclut tout ce qui est aléatoire ou imprévisible en fonction des informations actuellement disponibles.
Propagation des incertitudesUne mesure est toujours entachée d'erreur, dont on estime l'intensité par l'intermédiaire de l'incertitude. Lorsqu'une ou plusieurs mesures sont utilisées pour obtenir la valeur d'une ou de plusieurs autres grandeurs (par l'intermédiaire d'une formule explicite ou d'un algorithme), il faut savoir, non seulement calculer la valeur estimée de cette ou ces grandeurs, mais encore déterminer l'incertitude ou les incertitudes induites sur le ou les résultats du calcul.
Uncertainty quantificationUncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if the speed was exactly known, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc.
Méthode de Monte-CarloUne méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.
Prévision d'ensemblesvignette|En haut: Modèle déterministe du WRF pour la prévision de trajectoire de l'ouragan Rita en 2005. En bas : Dispersion des différents modèles utilisés par le National Hurricane Center pour la même tempête. La prévision d'ensembles est une méthode de prévision numérique du temps utilisé pour tenter de générer un échantillon représentatif des états futurs possibles d'un système dynamique. En effet, ni les observations, ni l'analyse, ni le modèle de prévision ne sont parfaits et la dynamique atmosphérique est très sensible, dans certaines conditions, à la moindre fluctuation.