Une méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes.
Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur. La comparaison des données mesurées à ces simulations peut permettre de mettre en évidence des caractéristiques inattendues, par exemple de nouvelles particules.
La méthode de simulation de Monte-Carlo permet aussi d'introduire une approche statistique du risque dans une décision financière. Elle consiste à isoler des variables-clés du projet, telles que le chiffre d'affaires ou la marge, et à leur affecter une distribution de probabilités. Pour chacun de ces facteurs, un grand nombre de tirages aléatoires est effectué dans les distributions de probabilité déterminées précédemment, afin de trouver la probabilité d'occurrence de chacun des résultats. À titre d'exemple, le choix de mode de gestion d'une collectivité territoriale dans le cadre d'un partenariat public-privé (PPP) s'analyse par la méthode de Monte-Carlo, afin de prendre en compte la répartition des risques entre acteurs publics et privés. On parle alors de « risques valorisés » ou « valeurs à risque ».
Le véritable développement des méthodes de Monte-Carlo s'est effectué sous l'impulsion de John von Neumann et Stanislaw Ulam notamment, lors de la Seconde Guerre mondiale, et des recherches sur la fabrication de la bombe atomique. Ils ont en particulier utilisé ces méthodes probabilistes pour résoudre des équations aux dérivées partielles dans le cadre de la Monte-Carlo N-Particle transport (MCNP).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course covers several exact, approximate, and numerical methods to solve the time-dependent molecular Schrödinger equation, and applications including calculations of molecular electronic spectra.
This course covers advanced 3D graphics techniques for realistic image synthesis. Students will learn how light interacts with objects in our world, and how to recreate these phenomena in a computer s
The goal of this lab is to get a working knowledge on the use of industrial state-of-the-art EDA (Electronic Design Automation) tools and design kits for the design of analog and digital integrated ci
vignette|Les jeux de dés sont des symboles du hasard (jeux de hasard). vignette|Tyché ou Fortuna et sa corne d'abondance (fortune, hasard, en grec ancien, sort en latin) déesse allégorique gréco-romaine de la chance, des coïncidences, de la fortune, de la prospérité, de la destinée...|alt= Le hasard est le principe déclencheur d'événements non liés à une cause connue. Il peut être synonyme de l'« imprévisibilité », de l'« imprédictibilité », de fortune ou de destin.
Les méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Le mot stochastique est synonyme d', en référence au hasard et s’oppose par définition au déterminisme. Stochastique est un terme d'origine grecque qui signifie « basé sur la conjecture ». En français, il est couramment utilisé pour décrire des phénomènes aléatoires ou imprévisibles. Dans les mathématiques et la statistique, « stochastique » fait référence à des processus qui sont déterminés par des séquences de mouvements aléatoires. Cela inclut tout ce qui est aléatoire ou imprévisible en fonction des informations actuellement disponibles.
Explore la quantification de l'incertitude à l'aide des méthodes de Quasi Monte Carlo et des mesures des écarts pour l'approximation intégrale et l'estimation du volume.
Within the scope of the implementation of a nuclear data pipeline aiming at producing the best possible evaluated nuclear data files, a major point is the production of relevant sensitivity coefficients when including integral benchmark information. Thanks ...
Geometric properties of lattice quantum gravity in two dimensions are studied numerically via Monte Carlo on Euclidean Dynamical Triangulations. A new computational method is proposed to simulate gravity coupled with fermions, which allows the study of int ...
Elsevier2024
,
Diffusion-based generative methods have proven effective in modeling trajectories with offline datasets. However, they often face computational challenges and can falter in generalization, especially in capturing temporal abstractions for long- horizon tas ...