Concept

Ultrabornological space

In functional analysis, a topological vector space (TVS) is called ultrabornological if every bounded linear operator from into another TVS is necessarily continuous. A general version of the closed graph theorem holds for ultrabornological spaces. Ultrabornological spaces were introduced by Alexander Grothendieck (Grothendieck [1955, p. 17] "espace du type (β)"). Let be a topological vector space (TVS). A disk is a convex and balanced set. A disk in a TVS is called bornivorous if it absorbs every bounded subset of A linear map between two TVSs is called infrabounded if it maps Banach disks to bounded disks. A disk in a TVS is called infrabornivorous if it satisfies any of the following equivalent conditions: absorbs every Banach disks in while if locally convex then we may add to this list: the gauge of is an infrabounded map; while if locally convex and Hausdorff then we may add to this list: absorbs all compact disks; that is, is "compactivorious". A TVS is ultrabornological if it satisfies any of the following equivalent conditions: every infrabornivorous disk in is a neighborhood of the origin; while if is a locally convex space then we may add to this list: every bounded linear operator from into a complete metrizable TVS is necessarily continuous; every infrabornivorous disk is a neighborhood of 0; be the inductive limit of the spaces as D varies over all compact disks in ; a seminorm on that is bounded on each Banach disk is necessarily continuous; for every locally convex space and every linear map if is bounded on each Banach disk then is continuous; for every Banach space and every linear map if is bounded on each Banach disk then is continuous. while if is a Hausdorff locally convex space then we may add to this list: is an inductive limit of Banach spaces; Every locally convex ultrabornological space is barrelled, quasi-ultrabarrelled space, and a bornological space but there exist bornological spaces that are not ultrabornological.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.