Concept

Auxiliary normed space

In functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm The other method is used if the disk is absorbing: in this case, the auxiliary normed space is the quotient space If the disk is both bounded and absorbing then the two auxiliary normed spaces are canonically isomorphic (as topological vector spaces and as normed spaces). Throughout this article, will be a real or complex vector space (not necessarily a TVS, yet) and will be a disk in Let will be a real or complex vector space. For any subset of the Minkowski functional of defined by: If then define to be the trivial map and it will be assumed that If and if is absorbing in then denote the Minkowski functional of in by where for all this is defined by Let will be a real or complex vector space. For any subset of such that the Minkowski functional is a seminorm on let denote which is called the seminormed space induced by where if is a norm then it is called the normed space induced by Assumption (Topology): is endowed with the seminorm topology induced by which will be denoted by or Importantly, this topology stems entirely from the set the algebraic structure of and the usual topology on (since is defined using the set and scalar multiplication). This justifies the study of Banach disks and is part of the reason why they play an important role in the theory of nuclear operators and nuclear spaces. The inclusion map is called the canonical map. Suppose that is a disk. Then so that is absorbing in the linear span of The set of all positive scalar multiples of forms a basis of neighborhoods at the origin for a locally convex topological vector space topology on The Minkowski functional of the disk in guarantees that is well-defined and forms a seminorm on The locally convex topology induced by this seminorm is the topology that was defined before.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
Séances de cours associées (32)
Analyse: Récapitulatif et espace normalisé Rn
Couvre un résumé de l'analyse 1 et 2, mettant l'accent sur l'espace normé Rn, les sous-ensembles et les fonctions continues.
Espaces Normés
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Espaces bien pointus et coin
Discute des espaces bien pointus, des quartiers, des coins, des exemples et de la propriété universelle du quotient.
Afficher plus
Publications associées (26)

Non-normal forms

Yves-Marie François Ducimetière

In this thesis, we propose to formally derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or stochastic forcing, or to an initial condition. This approach reconciles the non-mo ...
EPFL2024

Two mixed finite element formulations for the weak imposition of the Neumann boundary conditions for the Darcy flow

Erik Burman, Riccardo Puppi

We propose two different discrete formulations for the weak imposition of the Neumann boundary conditions of the Darcy flow. The Raviart-Thomas mixed finite element on both triangular and quadrilateral meshes is considered for both methods. One is a consis ...
2021

Proximity Results and Faster Algorithms for Integer Programming Using the Steinitz Lemma

Friedrich Eisenbrand

We consider integer programming problems in standard form max{c(T)x : Ax = b, x >= 0, x is an element of Z(n)} where A is an element of Z(mxn), b is an element of Z(m), and c is an element of Z(n). We show that such an integer program can be solved in time ...
ASSOC COMPUTING MACHINERY2020
Afficher plus
Personnes associées (1)
Concepts associés (14)
Fonctionnelle de Minkowski
En géométrie, la notion de jauge généralise celle de semi-norme. À toute partie C d'un R-espace vectoriel E on associe sa jauge, ou fonctionnelle de Minkowski p, qui est une application de E dans [0, +∞] mesurant, pour chaque vecteur, par quel rapport il faut dilater C pour englober ce vecteur. Dès que C contient l'origine, p est positivement homogène ; si C est étoilée par rapport p possède d'autres propriétés élémentaires. Si C est convexe — cas le plus souvent étudié — p est même sous-linéaire, mais elle n'est pas nécessairement symétrique et elle peut prendre des valeurs infinies.
Metrizable topological vector space
In functional analysis and related areas of mathematics, a metrizable (resp. pseudometrizable) topological vector space (TVS) is a TVS whose topology is induced by a metric (resp. pseudometric). An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.
Bornivorous set
In functional analysis, a subset of a real or complex vector space that has an associated vector bornology is called bornivorous and a bornivore if it absorbs every element of If is a topological vector space (TVS) then a subset of is bornivorous if it is bornivorous with respect to the von-Neumann bornology of . Bornivorous sets play an important role in the definitions of many classes of topological vector spaces, particularly bornological spaces.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.