In mathematics, specifically in order theory and functional analysis, a subset of an ordered vector space is said to be order complete in if for every non-empty subset of that is order bounded in (meaning contained in an interval, which is a set of the form for some ), the supremum ' and the infimum both exist and are elements of
An ordered vector space is called order complete, Dedekind complete, a complete vector lattice, or a complete Riesz space, if it is order complete as a subset of itself, in which case it is necessarily a vector lattice.
An ordered vector space is said to be countably order complete if each countable subset that is bounded above has a supremum.
Being an order complete vector space is an important property that is used frequently in the theory of topological vector lattices.
The order dual of a vector lattice is an order complete vector lattice under its canonical ordering.
If is a locally convex topological vector lattice then the strong dual is an order complete locally convex topological vector lattice under its canonical order.
Every reflexive locally convex topological vector lattice is order complete and a complete TVS.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un espace vectoriel ordonné (ou espace vectoriel partiellement ordonné) est un espace vectoriel sur muni d'une relation d'ordre compatible avec sa structure. Il est dit totalement ordonné si l'ordre associé est un ordre total. Soit E un espace vectoriel sur le corps des réels et un préordre sur .
In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice. Riesz spaces are named after Frigyes Riesz who first defined them in his 1928 paper Sur la décomposition des opérations fonctionelles linéaires. Riesz spaces have wide-ranging applications. They are important in measure theory, in that important results are special cases of results for Riesz spaces. For example, the Radon–Nikodym theorem follows as a special case of the Freudenthal spectral theorem.