Concept

Bornivorous set

Résumé
In functional analysis, a subset of a real or complex vector space that has an associated vector bornology is called bornivorous and a bornivore if it absorbs every element of If is a topological vector space (TVS) then a subset of is bornivorous if it is bornivorous with respect to the von-Neumann bornology of . Bornivorous sets play an important role in the definitions of many classes of topological vector spaces, particularly bornological spaces. If is a TVS then a subset of is called and a if absorbs every bounded subset of An absorbing disk in a locally convex space is bornivorous if and only if its Minkowski functional is locally bounded (i.e. maps bounded sets to bounded sets). A linear map between two TVSs is called if it maps Banach disks to bounded disks. A disk in is called if it absorbs every Banach disk. An absorbing disk in a locally convex space is infrabornivorous if and only if its Minkowski functional is infrabounded. A disk in a Hausdorff locally convex space is infrabornivorous if and only if it absorbs all compact disks (that is, if it is ""). Every bornivorous and infrabornivorous subset of a TVS is absorbing. In a pseudometrizable TVS, every bornivore is a neighborhood of the origin. Two TVS topologies on the same vector space have that same bounded subsets if and only if they have the same bornivores. Suppose is a vector subspace of finite codimension in a locally convex space and If is a barrel (resp. bornivorous barrel, bornivorous disk) in then there exists a barrel (resp. bornivorous barrel, bornivorous disk) in such that Every neighborhood of the origin in a TVS is bornivorous. The convex hull, closed convex hull, and balanced hull of a bornivorous set is again bornivorous. The preimage of a bornivore under a bounded linear map is a bornivore. If is a TVS in which every bounded subset is contained in a finite dimensional vector subspace, then every absorbing set is a bornivore. Let be as a vector space over the reals. If is the balanced hull of the closed line segment between and then is not bornivorous but the convex hull of is bornivorous.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.