Publication

Moments of the number of points in a bounded set for number field lattices

Maryna Viazovska, Nihar Prakash Gargava, Vlad Serban
2023
Rapport ou document de travail
Résumé

We examine the moments of the number of lattice points in a fixed ball of volume VV for lattices in Euclidean space which are modules over the ring of integers of a number field KK. In particular, denoting by ωKω_K the number of roots of unity in KK, we show that for lattices of large enough dimension the moments of the number of ωKω_K-tuples of lattice points converge to those of a Poisson distribution of mean V/ωKV/ω_K. This extends work of Rogers for Z\mathbb{Z}-lattices. What is more, we show that this convergence can also be achieved by increasing the degree of the number field KK as long as KK varies within a set of number fields with uniform lower bounds on the absolute Weil height of non-torsion elements.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.