Résumé
Un puits quantique est une zone de l'espace dans laquelle le potentiel ressenti par une particule quantique atteint un minimum. Il s'agit d'un puits de potentiel dont les petites dimensions entraînent une différence entre les prédictions de la mécanique classique et celles de la mécanique quantique. L'équation de Schrödinger prévoit en effet que l'énergie de la particule évoluant dans un tel puits est quantifiée. L'étude de puits quantiques de forme variée (puits carré, puits harmonique, couplage entre deux puits voisins...) fait partie intégrante de l'apprentissage de la mécanique quantique. Un puits quantique désigne également une hétérostructure de semi-conducteurs qui est la plus proche réalisation pratique des puits de potentiel étudiés dans les cours de mécanique quantique. Dans ce cas, le puits quantique s'obtient en réduisant la dimension du solide dans une des directions de l'espace à une valeur proche de la longueur d'onde de De Broglie de la particule (typiquement quelques dizaines de nanomètres). Le mouvement des électrons et des trous est alors confiné dans une direction de l'espace et libre dans les deux autres directions (confinement 1D). Le mouvement des porteurs dans la direction du confinement est discrétisé, donnant lieu à des bandes d'énergie. Des puits quantiques peuvent parfois se former de manière « naturelle » dans certains matériaux artificiels, comme les cristaux inorganiques ou molécules organiques. Cependant, dans la très grande majorité des cas, ils sont obtenus par une structuration volontaire et très précise des matériaux utilisés à l'échelle nanométrique. Un confinement 1D peut être obtenu avec un puits quantique, 2D avec un fil quantique, 3D avec une boîte quantique. L'étude des puits de potentiel en mécanique quantique est celle de l'équation de Schrödinger ou avec pour différentes formes de la fonction (énergie potentielle).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (21)
PHYS-310: Solid state physics II
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
PHYS-646: Insights on magnetic and semiconducting nanostructures
Introduction to the magnetic and electronic properties of nanostructures
Afficher plus