In network theory, link prediction is the problem of predicting the existence of a link between two entities in a network. Examples of link prediction include predicting friendship links among users in a social network, predicting co-authorship links in a citation network, and predicting interactions between genes and proteins in a biological network. Link prediction can also have a temporal aspect, where, given a snapshot of the set of links at time , the goal is to predict the links at time . Link prediction is widely applicable. In e-commerce, link prediction is often a subtask for recommending items to users. In the curation of citation databases, it can be used for record deduplication. In bioinformatics, it has been used to predict protein-protein interactions (PPI). It is also used to identify hidden groups of terrorists and criminals in security related applications. Consider a network , where represents the entity nodes in the network and x represents the set of "true" links across entities in the network. We are given the set of entities and a subset of true links which are referred to as observed links. The goal of link prediction is to identify the unobserved true links. In the temporal formulation of link prediction the observed links correspond to true links at a time , and the goal is to infer the set of true links at time Usually, we are also given a subset of unobserved links called potential links , and we need to identify true links among these potential links. In the binary classification formulation of the link prediction task the potential links are classified as either true links or false links. Link prediction approaches for this setting learn a classifier that maps links in to positive and negative labels i.e. . In the probability estimation formulation, potential links are associated with existence probabilities. Link prediction approaches for this setting learn a model that maps links in to a probability i.e. . Single link approaches learn a model that classifies each link independently.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.