Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We show that for a surjective, separable morphism f of smooth projective varieties over a field of positive characteristic such that f(*) OX congruent to O-Y subadditivity of Kodaira dimension holds, provided the base is of general type and the Hasse-Witt ...
We state conditions under which the set S(k) of k-rational points on a del Pezzo surface S of degree 1 over an infinite field k of characteristic not equal to 2 or 3 is Zariski dense. For example, it suffices to require that the elliptic fibration S -> P-1 ...
The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union ...
In this article we prove two cases of the abundance conjecture for 3-folds in characteristic p>5: (i) (X,Delta) is klt and kappa(X,KX+Delta)=1, and (ii) (X,Delta) is klt, KX+Delta equivalent to 0 and X is not uniruled. ...
We prove that the number of rational points of bounded height on certain del Pezzo surfaces of degree 1 defined over Q grows linearly, as predicted by Manin's conjecture. ...
We show that Brauer classes of a locally solvable degree 4 del Pezzo surface X are vertical for some projection away from a plane g : X -> P-1, i.e., that every Brauer class is obtained by pullback from an element of Br k(P-1). As a consequence, we prove t ...
Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. ...
Colloid stability is of high importance in a multitude of fields ranging from food science to biotechnology. There is strong interest in studying the stability of small particles (of a size of a few nanometres) with complex surface structures, that make th ...
We compute L-2-Betti numbers of postliminal, locally compact, unimodular groups in terms of ordinary dimensions of reduced cohomology with coefficients in irreducible unitary representations and the Plancherel measure. This allows us to compute the L-2-Bet ...
We compute the L-2-Betti numbers of the free C*-tensor categories, which are the representation categories of the universal unitary quantum groups A(u)(F). We show that the L-2-Betti numbers of the dual of a compact quantum group G are equal to the L-2-Bet ...