Résumé
La dynamique holomorphe est un domaine de l'analyse complexe et des systèmes dynamiques s'intéressant principalement à l'étude de l'itération des applications holomorphes. La dynamique holomorphe provient initialement de l'étude de la méthode de Newton faite par le mathématicien allemand Ernst Schröder dans les années 1870. Cette méthode, qui revient à itérer une certaine fraction rationnelle particulière, est ensuite généralisée à l'itération de fractions rationnelles quelconques. Cela motivait particulièrement Schröder pour résoudre certaines équations fonctionnelles, notamment son équation de Schröder, qui permettent de comprendre le comportement local de la dynamique au voisinage de certains points particuliers. Cette étude locale fut poursuivie durant la fin du XIXe siècle par les mathématiciens Gabriel Koenigs, Lucjan Böttcher et Léopold Leau. Cependant, la dynamique globale restait incomprise. L'Académie des Sciences de Paris décida de dédier son Grand prix des Sciences Mathématiques de 1918 à la compréhension du comportement global (appelé à l'époque "problème de l'itération"). Les français Pierre Fatou et Gaston Julia déposèrent deux manuscrits similaires qui révolutionnèrent le domaine, via l'utilisation de la théorie des familles normales récemment développée par Paul Montel. Pour des raisons inconnues, Fatou se retira de la compétition et Julia, gueule-cassée et figure patriotique, remporta le prix. Cependant, d'après plusieurs mathématiciens (Michèle Audin, John Milnor), c'est les travaux de Fatou qui ont fait le plus avancer le domaine. Pour plus de précisions, on pourra lire le livre de Michèle Audin dédié au sujet. Le domaine sombra dans l'oubli, jusqu'à sa redécouverte dans les années 1980. Les avancées de l'informatique permirent la visualisation des ensembles de Julia, ce qui popularisa beaucoup ce champ de recherche. Le domaine de recherche est très actif aujourd'hui, et est relié à de nombreux autres domaines des mathématiques. L'étude de la dynamique des fonctions holomorphes à une variable est de loin la plus développée.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.