Tensor networks or tensor network states are a class of variational wave functions used in the study of many-body quantum systems. Tensor networks extend one-dimensional matrix product states to higher dimensions while preserving some of their useful mathematical properties. The wave function is encoded as a tensor contraction of a network of individual tensors. The structure of the individual tensors can impose global symmetries on the wave function (such as antisymmetry under exchange of fermions) or restrict the wave function to specific quantum numbers, like total charge, angular momentum, or spin. It is also possible to derive strict bounds on quantities like entanglement and correlation length using the mathematical structure of the tensor network. This has made tensor networks useful in theoretical studies of quantum information in many-body systems. They have also proved useful in variational studies of ground states, excited states, and dynamics of strongly correlated many-body systems. In general, a tensor network diagram (Penrose diagram) can be viewed as a graph where nodes (or vertices) represent individual tensors, while edges represent summation over an index. Free indices are depicted as edges (or legs) attached to a single vertex only. Sometimes, there is also additional meaning to a node's shape. For instance, one can use trapezoids for unitary matrices or tensors with similar behaviour. This way, flipped trapezoids would be interpreted as complex conjugates to them. Tensor networks have been adapted for supervised learning, taking advantage of similar mathematical structure in variational studies in quantum mechanics and large-scale machine learning. This crossover has spurred collaboration between researchers in artificial intelligence and quantum information science. In June 2019, Google, the Perimeter Institute for Theoretical Physics, and X (company), released TensorNetwork, an open-source library for efficient tensor calculations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.