Concept

Gromov's compactness theorem (geometry)

In the mathematical field of metric geometry, Mikhael Gromov proved a fundamental compactness theorem for sequences of metric spaces. In the special case of Riemannian manifolds, the key assumption of his compactness theorem is automatically satisfied under an assumption on Ricci curvature. These theorems have been widely used in the fields of geometric group theory and Riemannian geometry. The Gromov–Hausdorff distance defines a notion of distance between any two metric spaces, thereby setting up the concept of a sequence of metric spaces which converges to another metric space. This is known as Gromov–Hausdorff convergence. Gromov found a condition on a sequence of compact metric spaces which ensures that a subsequence converges to some metric space relative to the Gromov–Hausdorff distance: Let (Xi, di) be a sequence of compact metric spaces with uniformly bounded diameter. Suppose that for every positive number ε there is a natural number N and, for every i, the set Xi can be covered by N metric balls of radius ε. Then the sequence (Xi, di) has a subsequence which converges relative to the Gromov–Hausdorff distance. The role of this theorem in the theory of Gromov–Hausdorff convergence may be considered as analogous to the role of the Arzelà–Ascoli theorem in the theory of uniform convergence. Gromov first formally introduced it in his 1981 resolution of the Milnor–Wolf conjecture in the field of geometric group theory, where he applied it to define the asymptotic cone of certain metric spaces. These techniques were later extended by Gromov and others, using the theory of ultrafilters. Specializing to the setting of geodesically complete Riemannian manifolds with a fixed lower bound on the Ricci curvature, the crucial covering condition in Gromov's metric compactness theorem is automatically satisfied as a corollary of the Bishop–Gromov volume comparison theorem. As such, it follows that: Consider a sequence of closed Riemannian manifolds with a uniform lower bound on the Ricci curvature and a uniform upper bound on the diameter.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.