In the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. (In the above, by definition a filter on a set does not contain the empty set.) Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.
Ultrafilters on sets are an important special instance of ultrafilters on partially ordered sets, where the partially ordered set consists of the power set and the partial order is subset inclusion This article deals specifically with ultrafilters on a set and does not cover the more general notion.
There are two types of ultrafilter on a set. A principal ultrafilter on is the collection of all subsets of that contain a fixed element . The ultrafilters that are not principal are the free ultrafilters. The existence of free ultrafilters on any infinite set is implied by the ultrafilter lemma, which can be proven in ZFC. On the other hand, there exists models of ZF where every ultrafilter on a set is principal.
Ultrafilters have many applications in set theory, model theory, and topology. Usually, only free ultrafilters lead to non-trivial constructions. For example, an ultraproduct modulo a principal ultrafilter is always isomorphic to one of the factors, while an ultraproduct modulo a free ultrafilter usually has more complex structures.
Filter (mathematics) and Ultrafilter
Given an arbitrary set an ultrafilter on is a non-empty family of subsets of such that:
or : The empty set is not an element of
If and if is any superset of (that is, if ) then
If and are elements of then so is their intersection
If then either or its complement is an element of
Properties (1), (2), and (3) are the defining properties of a Some authors do not include non-degeneracy (which is property (1) above) in their definition of "filter".
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
In mathematics, a filter on a set is a family of subsets such that: and if and , then If , and , then A filter on a set may be thought of as representing a "collection of large subsets", one intuitive example being the neighborhood filter. Filters appear in order theory, model theory, and set theory, but can also be found in topology, from which they originate. The dual notion of a filter is an ideal.
vignette|420x420px|Si toute partie finie d'une théorie est satisfaisable (schématisée à gauche), alors la théorie est satisfaisable (schématisée à droite). En logique mathématique, un théorème de compacité énonce que si toute partie finie d'une théorie est satisfaisable alors la théorie elle-même est satisfaisable. Il existe des logiques où il y a un théorème de compacité comme le calcul propositionnel ou la logique du premier ordre (on parle de logiques compactes). Il existe aussi des logiques sans théorème de compacité.
vignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
In Control System Theory, the study of continuous-time, finite dimensional, underdetermined systems of ordinary differential equations is an important topic. Classification of systems in different categories is a natural initial step to the analysis of a g ...
Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field Theory (QFT). Because of their powerful symmetry properties, they play the role of signposts in the space of QFTs. Any method that gives us information about their structure ...