Concept

Quasitransitive relation

The mathematical notion of quasitransitivity is a weakened version of transitivity that is used in social choice theory and microeconomics. Informally, a relation is quasitransitive if it is symmetric for some values and transitive elsewhere. The concept was introduced by to study the consequences of Arrow's theorem. A binary relation T over a set X is quasitransitive if for all a, b, and c in X the following holds: If the relation is also antisymmetric, T is transitive. Alternately, for a relation T, define the asymmetric or "strict" part P: Then T is quasitransitive if and only if P is transitive. Preferences are assumed to be quasitransitive (rather than transitive) in some economic contexts. The classic example is a person indifferent between 7 and 8 grams of sugar and indifferent between 8 and 9 grams of sugar, but who prefers 9 grams of sugar to 7. Similarly, the Sorites paradox can be resolved by weakening assumed transitivity of certain relations to quasitransitivity. A relation R is quasitransitive if, and only if, it is the disjoint union of a symmetric relation J and a transitive relation P. J and P are not uniquely determined by a given R; however, the P from the only-if part is minimal. As a consequence, each symmetric relation is quasitransitive, and so is each transitive relation. Moreover, an antisymmetric and quasitransitive relation is always transitive. The relation from the above sugar example, {(7,7), (7,8), (7,9), (8,7), (8,8), (8,9), (9,8), (9,9)}, is quasitransitive, but not transitive. A quasitransitive relation needn't be acyclic: for every non-empty set A, the universal relation A×A is both cyclic and quasitransitive. A relation is quasitransitive if, and only if, its complement is. Similarly, a relation is quasitransitive if, and only if, its converse is.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.